Automatic detection and measurement of viral replication compartments by ellipse adjustment

Viruses employ a variety of strategies to hijack cellular activities through the orchestrated recruitment of macromolecules to specific virus-induced cellular micro-environments. Adenoviruses (Ad) and other DNA viruses induce extensive reorganization of the cell nucleus and formation of nuclear Repl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-11, Vol.6 (1), p.36505-36505, Article 36505
Hauptverfasser: Garcés, Yasel, Guerrero, Adán, Hidalgo, Paloma, López, Raul Eduardo, Wood, Christopher D., Gonzalez, Ramón A., Rendón-Mancha, Juan Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Viruses employ a variety of strategies to hijack cellular activities through the orchestrated recruitment of macromolecules to specific virus-induced cellular micro-environments. Adenoviruses (Ad) and other DNA viruses induce extensive reorganization of the cell nucleus and formation of nuclear Replication Compartments (RCs), where the viral genome is replicated and expressed. In this work an automatic algorithm designed for detection and segmentation of RCs using ellipses is presented. Unlike algorithms available in the literature, this approach is deterministic, automatic, and can adjust multiple RCs using ellipses. The proposed algorithm is non iterative, computationally efficient and is invariant to affine transformations. The method was validated over both synthetic images and more than 400 real images of Ad-infected cells at various timepoints of the viral replication cycle obtaining relevant information about the biogenesis of adenoviral RCs. As proof of concept the algorithm was then used to quantitatively compare RCs in cells infected with the adenovirus wild type or an adenovirus mutant that is null for expression of a viral protein that is known to affect activities associated with RCs that result in deficient viral progeny production.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep36505