Tailored Freestanding Multilayered Membranes Based on Chitosan and Alginate

Engineering metabolically demanding tissues requires the supply of nutrients, oxygen, and removal of metabolic byproducts, as well as adequate mechanical properties. In this work, we propose the development of chitosan (CHIT)/alginate (ALG) freestanding membranes fabricated by layer-by-layer (LbL) a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomacromolecules 2014-10, Vol.15 (10), p.3817-3826
Hauptverfasser: Silva, Joana M, Duarte, Ana Rita C, Caridade, Sofia G, Picart, Catherine, Reis, Rui L, Mano, João F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3826
container_issue 10
container_start_page 3817
container_title Biomacromolecules
container_volume 15
creator Silva, Joana M
Duarte, Ana Rita C
Caridade, Sofia G
Picart, Catherine
Reis, Rui L
Mano, João F
description Engineering metabolically demanding tissues requires the supply of nutrients, oxygen, and removal of metabolic byproducts, as well as adequate mechanical properties. In this work, we propose the development of chitosan (CHIT)/alginate (ALG) freestanding membranes fabricated by layer-by-layer (LbL) assembly. CHIT/ALG membranes were cross-linked with genipin at a concentration of 1 mg·mL–1 or 5 mg·mL–1. Mass transport properties of glucose and oxygen were evaluated on the freestanding membranes. The diffusion of glucose and oxygen decreases with increasing cross-linking concentration. Mechanical properties were also evaluated in physiological-simulated conditions. Increasing cross-linking density leads to an increase of storage modulus, Young modulus, and ultimate tensile strength, but to a decrease in the maximum hydrostatic pressure. The in vitro biological performance demonstrates that cross-linked films are more favorable for cell adhesion. This work demonstrates the versatility and feasibility of LbL assembly to generate nanostructured constructs with tunable permeability, mechanical, and biological properties.
doi_str_mv 10.1021/bm501156v
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5097862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1635037449</sourcerecordid><originalsourceid>FETCH-LOGICAL-a541v-e9b522fe644133db751b5aef7fd25d3a6f63b1de9883af9a8d3e461e361dcd713</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0Eog9Y8AdQNkiwCPjteIM0HVGKmIpNWVs3sTPjynGKnYzUf4-nHWYAIbHy434-5_oehF4R_J5gSj60g8CECLl9gk6JoLLmEtOnD3tRK6XVCTrL-RZjrBkXz9EJFZRzRtkp-noDPozJ2eoyOZcniNbHdXU9h8kHuHe7yrUb2gTR5eoCcjmPsVpu_DRmiFXhq0VY-wiTe4Ge9RCye7lfz9H3y083y6t69e3zl-ViVYPgZFs73QpKeyc5J4zZVgnSCnC96i0VloHsJWuJdbppGPQaGsscl8QxSWxnFWHn6OOj7t3cDs52Lk4JgrlLfoB0b0bw5s9K9BuzHrdGYK0aSYvAu0eBzV_PrhYrs7vDhFKJcbPdmb3dm6Xxx1wmZAafOxdCGcg4Z0PLVAUjSuv_okQygZniXB876NKYc3L9oQ2CzS5Tc8i0sK9__-6B_BViAd7sAcgdhL5k1fl85BpNG0n4kYMum9txTrGk9A_Dn7nRtMo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1635037449</pqid></control><display><type>article</type><title>Tailored Freestanding Multilayered Membranes Based on Chitosan and Alginate</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Silva, Joana M ; Duarte, Ana Rita C ; Caridade, Sofia G ; Picart, Catherine ; Reis, Rui L ; Mano, João F</creator><creatorcontrib>Silva, Joana M ; Duarte, Ana Rita C ; Caridade, Sofia G ; Picart, Catherine ; Reis, Rui L ; Mano, João F</creatorcontrib><description>Engineering metabolically demanding tissues requires the supply of nutrients, oxygen, and removal of metabolic byproducts, as well as adequate mechanical properties. In this work, we propose the development of chitosan (CHIT)/alginate (ALG) freestanding membranes fabricated by layer-by-layer (LbL) assembly. CHIT/ALG membranes were cross-linked with genipin at a concentration of 1 mg·mL–1 or 5 mg·mL–1. Mass transport properties of glucose and oxygen were evaluated on the freestanding membranes. The diffusion of glucose and oxygen decreases with increasing cross-linking concentration. Mechanical properties were also evaluated in physiological-simulated conditions. Increasing cross-linking density leads to an increase of storage modulus, Young modulus, and ultimate tensile strength, but to a decrease in the maximum hydrostatic pressure. The in vitro biological performance demonstrates that cross-linked films are more favorable for cell adhesion. This work demonstrates the versatility and feasibility of LbL assembly to generate nanostructured constructs with tunable permeability, mechanical, and biological properties.</description><identifier>ISSN: 1525-7797</identifier><identifier>ISSN: 1526-4602</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/bm501156v</identifier><identifier>PMID: 25244323</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>alginates ; Alginates - chemistry ; Alginates - metabolism ; Animals ; Applied sciences ; Biocompatible Materials - chemistry ; Biocompatible Materials - metabolism ; byproducts ; cell adhesion ; Cell Adhesion - physiology ; Cells, Cultured ; Chemical Sciences ; chitosan ; Chitosan - chemistry ; Chitosan - metabolism ; Cross-Linking Reagents - chemistry ; crosslinking ; Exact sciences and technology ; Exchange resins and membranes ; Fibroblasts - metabolism ; Forms of application and semi-finished materials ; glucose ; Glucuronic Acid - chemistry ; Glucuronic Acid - metabolism ; Hexuronic Acids - chemistry ; Hexuronic Acids - metabolism ; Iridoids - chemistry ; Iridoids - metabolism ; mass transfer ; Material chemistry ; Membranes - chemistry ; Membranes - metabolism ; Membranes, Artificial ; Mice ; Nanostructures - chemistry ; nutrients ; oxygen ; Permeability ; Polymer industry, paints, wood ; storage modulus ; Technology of polymers ; Tensile Strength ; tissues</subject><ispartof>Biomacromolecules, 2014-10, Vol.15 (10), p.3817-3826</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a541v-e9b522fe644133db751b5aef7fd25d3a6f63b1de9883af9a8d3e461e361dcd713</citedby><cites>FETCH-LOGICAL-a541v-e9b522fe644133db751b5aef7fd25d3a6f63b1de9883af9a8d3e461e361dcd713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bm501156v$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bm501156v$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28928614$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25244323$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01226008$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Silva, Joana M</creatorcontrib><creatorcontrib>Duarte, Ana Rita C</creatorcontrib><creatorcontrib>Caridade, Sofia G</creatorcontrib><creatorcontrib>Picart, Catherine</creatorcontrib><creatorcontrib>Reis, Rui L</creatorcontrib><creatorcontrib>Mano, João F</creatorcontrib><title>Tailored Freestanding Multilayered Membranes Based on Chitosan and Alginate</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>Engineering metabolically demanding tissues requires the supply of nutrients, oxygen, and removal of metabolic byproducts, as well as adequate mechanical properties. In this work, we propose the development of chitosan (CHIT)/alginate (ALG) freestanding membranes fabricated by layer-by-layer (LbL) assembly. CHIT/ALG membranes were cross-linked with genipin at a concentration of 1 mg·mL–1 or 5 mg·mL–1. Mass transport properties of glucose and oxygen were evaluated on the freestanding membranes. The diffusion of glucose and oxygen decreases with increasing cross-linking concentration. Mechanical properties were also evaluated in physiological-simulated conditions. Increasing cross-linking density leads to an increase of storage modulus, Young modulus, and ultimate tensile strength, but to a decrease in the maximum hydrostatic pressure. The in vitro biological performance demonstrates that cross-linked films are more favorable for cell adhesion. This work demonstrates the versatility and feasibility of LbL assembly to generate nanostructured constructs with tunable permeability, mechanical, and biological properties.</description><subject>alginates</subject><subject>Alginates - chemistry</subject><subject>Alginates - metabolism</subject><subject>Animals</subject><subject>Applied sciences</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biocompatible Materials - metabolism</subject><subject>byproducts</subject><subject>cell adhesion</subject><subject>Cell Adhesion - physiology</subject><subject>Cells, Cultured</subject><subject>Chemical Sciences</subject><subject>chitosan</subject><subject>Chitosan - chemistry</subject><subject>Chitosan - metabolism</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>crosslinking</subject><subject>Exact sciences and technology</subject><subject>Exchange resins and membranes</subject><subject>Fibroblasts - metabolism</subject><subject>Forms of application and semi-finished materials</subject><subject>glucose</subject><subject>Glucuronic Acid - chemistry</subject><subject>Glucuronic Acid - metabolism</subject><subject>Hexuronic Acids - chemistry</subject><subject>Hexuronic Acids - metabolism</subject><subject>Iridoids - chemistry</subject><subject>Iridoids - metabolism</subject><subject>mass transfer</subject><subject>Material chemistry</subject><subject>Membranes - chemistry</subject><subject>Membranes - metabolism</subject><subject>Membranes, Artificial</subject><subject>Mice</subject><subject>Nanostructures - chemistry</subject><subject>nutrients</subject><subject>oxygen</subject><subject>Permeability</subject><subject>Polymer industry, paints, wood</subject><subject>storage modulus</subject><subject>Technology of polymers</subject><subject>Tensile Strength</subject><subject>tissues</subject><issn>1525-7797</issn><issn>1526-4602</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhS0Eog9Y8AdQNkiwCPjteIM0HVGKmIpNWVs3sTPjynGKnYzUf4-nHWYAIbHy434-5_oehF4R_J5gSj60g8CECLl9gk6JoLLmEtOnD3tRK6XVCTrL-RZjrBkXz9EJFZRzRtkp-noDPozJ2eoyOZcniNbHdXU9h8kHuHe7yrUb2gTR5eoCcjmPsVpu_DRmiFXhq0VY-wiTe4Ge9RCye7lfz9H3y083y6t69e3zl-ViVYPgZFs73QpKeyc5J4zZVgnSCnC96i0VloHsJWuJdbppGPQaGsscl8QxSWxnFWHn6OOj7t3cDs52Lk4JgrlLfoB0b0bw5s9K9BuzHrdGYK0aSYvAu0eBzV_PrhYrs7vDhFKJcbPdmb3dm6Xxx1wmZAafOxdCGcg4Z0PLVAUjSuv_okQygZniXB876NKYc3L9oQ2CzS5Tc8i0sK9__-6B_BViAd7sAcgdhL5k1fl85BpNG0n4kYMum9txTrGk9A_Dn7nRtMo</recordid><startdate>20141013</startdate><enddate>20141013</enddate><creator>Silva, Joana M</creator><creator>Duarte, Ana Rita C</creator><creator>Caridade, Sofia G</creator><creator>Picart, Catherine</creator><creator>Reis, Rui L</creator><creator>Mano, João F</creator><general>American Chemical Society</general><general>Edition</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7S9</scope><scope>L.6</scope><scope>1XC</scope><scope>5PM</scope></search><sort><creationdate>20141013</creationdate><title>Tailored Freestanding Multilayered Membranes Based on Chitosan and Alginate</title><author>Silva, Joana M ; Duarte, Ana Rita C ; Caridade, Sofia G ; Picart, Catherine ; Reis, Rui L ; Mano, João F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a541v-e9b522fe644133db751b5aef7fd25d3a6f63b1de9883af9a8d3e461e361dcd713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>alginates</topic><topic>Alginates - chemistry</topic><topic>Alginates - metabolism</topic><topic>Animals</topic><topic>Applied sciences</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biocompatible Materials - metabolism</topic><topic>byproducts</topic><topic>cell adhesion</topic><topic>Cell Adhesion - physiology</topic><topic>Cells, Cultured</topic><topic>Chemical Sciences</topic><topic>chitosan</topic><topic>Chitosan - chemistry</topic><topic>Chitosan - metabolism</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>crosslinking</topic><topic>Exact sciences and technology</topic><topic>Exchange resins and membranes</topic><topic>Fibroblasts - metabolism</topic><topic>Forms of application and semi-finished materials</topic><topic>glucose</topic><topic>Glucuronic Acid - chemistry</topic><topic>Glucuronic Acid - metabolism</topic><topic>Hexuronic Acids - chemistry</topic><topic>Hexuronic Acids - metabolism</topic><topic>Iridoids - chemistry</topic><topic>Iridoids - metabolism</topic><topic>mass transfer</topic><topic>Material chemistry</topic><topic>Membranes - chemistry</topic><topic>Membranes - metabolism</topic><topic>Membranes, Artificial</topic><topic>Mice</topic><topic>Nanostructures - chemistry</topic><topic>nutrients</topic><topic>oxygen</topic><topic>Permeability</topic><topic>Polymer industry, paints, wood</topic><topic>storage modulus</topic><topic>Technology of polymers</topic><topic>Tensile Strength</topic><topic>tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Joana M</creatorcontrib><creatorcontrib>Duarte, Ana Rita C</creatorcontrib><creatorcontrib>Caridade, Sofia G</creatorcontrib><creatorcontrib>Picart, Catherine</creatorcontrib><creatorcontrib>Reis, Rui L</creatorcontrib><creatorcontrib>Mano, João F</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, Joana M</au><au>Duarte, Ana Rita C</au><au>Caridade, Sofia G</au><au>Picart, Catherine</au><au>Reis, Rui L</au><au>Mano, João F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailored Freestanding Multilayered Membranes Based on Chitosan and Alginate</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2014-10-13</date><risdate>2014</risdate><volume>15</volume><issue>10</issue><spage>3817</spage><epage>3826</epage><pages>3817-3826</pages><issn>1525-7797</issn><issn>1526-4602</issn><eissn>1526-4602</eissn><abstract>Engineering metabolically demanding tissues requires the supply of nutrients, oxygen, and removal of metabolic byproducts, as well as adequate mechanical properties. In this work, we propose the development of chitosan (CHIT)/alginate (ALG) freestanding membranes fabricated by layer-by-layer (LbL) assembly. CHIT/ALG membranes were cross-linked with genipin at a concentration of 1 mg·mL–1 or 5 mg·mL–1. Mass transport properties of glucose and oxygen were evaluated on the freestanding membranes. The diffusion of glucose and oxygen decreases with increasing cross-linking concentration. Mechanical properties were also evaluated in physiological-simulated conditions. Increasing cross-linking density leads to an increase of storage modulus, Young modulus, and ultimate tensile strength, but to a decrease in the maximum hydrostatic pressure. The in vitro biological performance demonstrates that cross-linked films are more favorable for cell adhesion. This work demonstrates the versatility and feasibility of LbL assembly to generate nanostructured constructs with tunable permeability, mechanical, and biological properties.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>25244323</pmid><doi>10.1021/bm501156v</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-7797
ispartof Biomacromolecules, 2014-10, Vol.15 (10), p.3817-3826
issn 1525-7797
1526-4602
1526-4602
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5097862
source MEDLINE; American Chemical Society Journals
subjects alginates
Alginates - chemistry
Alginates - metabolism
Animals
Applied sciences
Biocompatible Materials - chemistry
Biocompatible Materials - metabolism
byproducts
cell adhesion
Cell Adhesion - physiology
Cells, Cultured
Chemical Sciences
chitosan
Chitosan - chemistry
Chitosan - metabolism
Cross-Linking Reagents - chemistry
crosslinking
Exact sciences and technology
Exchange resins and membranes
Fibroblasts - metabolism
Forms of application and semi-finished materials
glucose
Glucuronic Acid - chemistry
Glucuronic Acid - metabolism
Hexuronic Acids - chemistry
Hexuronic Acids - metabolism
Iridoids - chemistry
Iridoids - metabolism
mass transfer
Material chemistry
Membranes - chemistry
Membranes - metabolism
Membranes, Artificial
Mice
Nanostructures - chemistry
nutrients
oxygen
Permeability
Polymer industry, paints, wood
storage modulus
Technology of polymers
Tensile Strength
tissues
title Tailored Freestanding Multilayered Membranes Based on Chitosan and Alginate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T23%3A22%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailored%20Freestanding%20Multilayered%20Membranes%20Based%20on%20Chitosan%20and%20Alginate&rft.jtitle=Biomacromolecules&rft.au=Silva,%20Joana%20M&rft.date=2014-10-13&rft.volume=15&rft.issue=10&rft.spage=3817&rft.epage=3826&rft.pages=3817-3826&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/bm501156v&rft_dat=%3Cproquest_pubme%3E1635037449%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1635037449&rft_id=info:pmid/25244323&rfr_iscdi=true