Tailored Freestanding Multilayered Membranes Based on Chitosan and Alginate
Engineering metabolically demanding tissues requires the supply of nutrients, oxygen, and removal of metabolic byproducts, as well as adequate mechanical properties. In this work, we propose the development of chitosan (CHIT)/alginate (ALG) freestanding membranes fabricated by layer-by-layer (LbL) a...
Gespeichert in:
Veröffentlicht in: | Biomacromolecules 2014-10, Vol.15 (10), p.3817-3826 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3826 |
---|---|
container_issue | 10 |
container_start_page | 3817 |
container_title | Biomacromolecules |
container_volume | 15 |
creator | Silva, Joana M Duarte, Ana Rita C Caridade, Sofia G Picart, Catherine Reis, Rui L Mano, João F |
description | Engineering metabolically demanding tissues requires the supply of nutrients, oxygen, and removal of metabolic byproducts, as well as adequate mechanical properties. In this work, we propose the development of chitosan (CHIT)/alginate (ALG) freestanding membranes fabricated by layer-by-layer (LbL) assembly. CHIT/ALG membranes were cross-linked with genipin at a concentration of 1 mg·mL–1 or 5 mg·mL–1. Mass transport properties of glucose and oxygen were evaluated on the freestanding membranes. The diffusion of glucose and oxygen decreases with increasing cross-linking concentration. Mechanical properties were also evaluated in physiological-simulated conditions. Increasing cross-linking density leads to an increase of storage modulus, Young modulus, and ultimate tensile strength, but to a decrease in the maximum hydrostatic pressure. The in vitro biological performance demonstrates that cross-linked films are more favorable for cell adhesion. This work demonstrates the versatility and feasibility of LbL assembly to generate nanostructured constructs with tunable permeability, mechanical, and biological properties. |
doi_str_mv | 10.1021/bm501156v |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5097862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1635037449</sourcerecordid><originalsourceid>FETCH-LOGICAL-a541v-e9b522fe644133db751b5aef7fd25d3a6f63b1de9883af9a8d3e461e361dcd713</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0Eog9Y8AdQNkiwCPjteIM0HVGKmIpNWVs3sTPjynGKnYzUf4-nHWYAIbHy434-5_oehF4R_J5gSj60g8CECLl9gk6JoLLmEtOnD3tRK6XVCTrL-RZjrBkXz9EJFZRzRtkp-noDPozJ2eoyOZcniNbHdXU9h8kHuHe7yrUb2gTR5eoCcjmPsVpu_DRmiFXhq0VY-wiTe4Ge9RCye7lfz9H3y083y6t69e3zl-ViVYPgZFs73QpKeyc5J4zZVgnSCnC96i0VloHsJWuJdbppGPQaGsscl8QxSWxnFWHn6OOj7t3cDs52Lk4JgrlLfoB0b0bw5s9K9BuzHrdGYK0aSYvAu0eBzV_PrhYrs7vDhFKJcbPdmb3dm6Xxx1wmZAafOxdCGcg4Z0PLVAUjSuv_okQygZniXB876NKYc3L9oQ2CzS5Tc8i0sK9__-6B_BViAd7sAcgdhL5k1fl85BpNG0n4kYMum9txTrGk9A_Dn7nRtMo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1635037449</pqid></control><display><type>article</type><title>Tailored Freestanding Multilayered Membranes Based on Chitosan and Alginate</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Silva, Joana M ; Duarte, Ana Rita C ; Caridade, Sofia G ; Picart, Catherine ; Reis, Rui L ; Mano, João F</creator><creatorcontrib>Silva, Joana M ; Duarte, Ana Rita C ; Caridade, Sofia G ; Picart, Catherine ; Reis, Rui L ; Mano, João F</creatorcontrib><description>Engineering metabolically demanding tissues requires the supply of nutrients, oxygen, and removal of metabolic byproducts, as well as adequate mechanical properties. In this work, we propose the development of chitosan (CHIT)/alginate (ALG) freestanding membranes fabricated by layer-by-layer (LbL) assembly. CHIT/ALG membranes were cross-linked with genipin at a concentration of 1 mg·mL–1 or 5 mg·mL–1. Mass transport properties of glucose and oxygen were evaluated on the freestanding membranes. The diffusion of glucose and oxygen decreases with increasing cross-linking concentration. Mechanical properties were also evaluated in physiological-simulated conditions. Increasing cross-linking density leads to an increase of storage modulus, Young modulus, and ultimate tensile strength, but to a decrease in the maximum hydrostatic pressure. The in vitro biological performance demonstrates that cross-linked films are more favorable for cell adhesion. This work demonstrates the versatility and feasibility of LbL assembly to generate nanostructured constructs with tunable permeability, mechanical, and biological properties.</description><identifier>ISSN: 1525-7797</identifier><identifier>ISSN: 1526-4602</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/bm501156v</identifier><identifier>PMID: 25244323</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>alginates ; Alginates - chemistry ; Alginates - metabolism ; Animals ; Applied sciences ; Biocompatible Materials - chemistry ; Biocompatible Materials - metabolism ; byproducts ; cell adhesion ; Cell Adhesion - physiology ; Cells, Cultured ; Chemical Sciences ; chitosan ; Chitosan - chemistry ; Chitosan - metabolism ; Cross-Linking Reagents - chemistry ; crosslinking ; Exact sciences and technology ; Exchange resins and membranes ; Fibroblasts - metabolism ; Forms of application and semi-finished materials ; glucose ; Glucuronic Acid - chemistry ; Glucuronic Acid - metabolism ; Hexuronic Acids - chemistry ; Hexuronic Acids - metabolism ; Iridoids - chemistry ; Iridoids - metabolism ; mass transfer ; Material chemistry ; Membranes - chemistry ; Membranes - metabolism ; Membranes, Artificial ; Mice ; Nanostructures - chemistry ; nutrients ; oxygen ; Permeability ; Polymer industry, paints, wood ; storage modulus ; Technology of polymers ; Tensile Strength ; tissues</subject><ispartof>Biomacromolecules, 2014-10, Vol.15 (10), p.3817-3826</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a541v-e9b522fe644133db751b5aef7fd25d3a6f63b1de9883af9a8d3e461e361dcd713</citedby><cites>FETCH-LOGICAL-a541v-e9b522fe644133db751b5aef7fd25d3a6f63b1de9883af9a8d3e461e361dcd713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bm501156v$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bm501156v$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28928614$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25244323$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01226008$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Silva, Joana M</creatorcontrib><creatorcontrib>Duarte, Ana Rita C</creatorcontrib><creatorcontrib>Caridade, Sofia G</creatorcontrib><creatorcontrib>Picart, Catherine</creatorcontrib><creatorcontrib>Reis, Rui L</creatorcontrib><creatorcontrib>Mano, João F</creatorcontrib><title>Tailored Freestanding Multilayered Membranes Based on Chitosan and Alginate</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>Engineering metabolically demanding tissues requires the supply of nutrients, oxygen, and removal of metabolic byproducts, as well as adequate mechanical properties. In this work, we propose the development of chitosan (CHIT)/alginate (ALG) freestanding membranes fabricated by layer-by-layer (LbL) assembly. CHIT/ALG membranes were cross-linked with genipin at a concentration of 1 mg·mL–1 or 5 mg·mL–1. Mass transport properties of glucose and oxygen were evaluated on the freestanding membranes. The diffusion of glucose and oxygen decreases with increasing cross-linking concentration. Mechanical properties were also evaluated in physiological-simulated conditions. Increasing cross-linking density leads to an increase of storage modulus, Young modulus, and ultimate tensile strength, but to a decrease in the maximum hydrostatic pressure. The in vitro biological performance demonstrates that cross-linked films are more favorable for cell adhesion. This work demonstrates the versatility and feasibility of LbL assembly to generate nanostructured constructs with tunable permeability, mechanical, and biological properties.</description><subject>alginates</subject><subject>Alginates - chemistry</subject><subject>Alginates - metabolism</subject><subject>Animals</subject><subject>Applied sciences</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biocompatible Materials - metabolism</subject><subject>byproducts</subject><subject>cell adhesion</subject><subject>Cell Adhesion - physiology</subject><subject>Cells, Cultured</subject><subject>Chemical Sciences</subject><subject>chitosan</subject><subject>Chitosan - chemistry</subject><subject>Chitosan - metabolism</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>crosslinking</subject><subject>Exact sciences and technology</subject><subject>Exchange resins and membranes</subject><subject>Fibroblasts - metabolism</subject><subject>Forms of application and semi-finished materials</subject><subject>glucose</subject><subject>Glucuronic Acid - chemistry</subject><subject>Glucuronic Acid - metabolism</subject><subject>Hexuronic Acids - chemistry</subject><subject>Hexuronic Acids - metabolism</subject><subject>Iridoids - chemistry</subject><subject>Iridoids - metabolism</subject><subject>mass transfer</subject><subject>Material chemistry</subject><subject>Membranes - chemistry</subject><subject>Membranes - metabolism</subject><subject>Membranes, Artificial</subject><subject>Mice</subject><subject>Nanostructures - chemistry</subject><subject>nutrients</subject><subject>oxygen</subject><subject>Permeability</subject><subject>Polymer industry, paints, wood</subject><subject>storage modulus</subject><subject>Technology of polymers</subject><subject>Tensile Strength</subject><subject>tissues</subject><issn>1525-7797</issn><issn>1526-4602</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhS0Eog9Y8AdQNkiwCPjteIM0HVGKmIpNWVs3sTPjynGKnYzUf4-nHWYAIbHy434-5_oehF4R_J5gSj60g8CECLl9gk6JoLLmEtOnD3tRK6XVCTrL-RZjrBkXz9EJFZRzRtkp-noDPozJ2eoyOZcniNbHdXU9h8kHuHe7yrUb2gTR5eoCcjmPsVpu_DRmiFXhq0VY-wiTe4Ge9RCye7lfz9H3y083y6t69e3zl-ViVYPgZFs73QpKeyc5J4zZVgnSCnC96i0VloHsJWuJdbppGPQaGsscl8QxSWxnFWHn6OOj7t3cDs52Lk4JgrlLfoB0b0bw5s9K9BuzHrdGYK0aSYvAu0eBzV_PrhYrs7vDhFKJcbPdmb3dm6Xxx1wmZAafOxdCGcg4Z0PLVAUjSuv_okQygZniXB876NKYc3L9oQ2CzS5Tc8i0sK9__-6B_BViAd7sAcgdhL5k1fl85BpNG0n4kYMum9txTrGk9A_Dn7nRtMo</recordid><startdate>20141013</startdate><enddate>20141013</enddate><creator>Silva, Joana M</creator><creator>Duarte, Ana Rita C</creator><creator>Caridade, Sofia G</creator><creator>Picart, Catherine</creator><creator>Reis, Rui L</creator><creator>Mano, João F</creator><general>American Chemical Society</general><general>Edition</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7S9</scope><scope>L.6</scope><scope>1XC</scope><scope>5PM</scope></search><sort><creationdate>20141013</creationdate><title>Tailored Freestanding Multilayered Membranes Based on Chitosan and Alginate</title><author>Silva, Joana M ; Duarte, Ana Rita C ; Caridade, Sofia G ; Picart, Catherine ; Reis, Rui L ; Mano, João F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a541v-e9b522fe644133db751b5aef7fd25d3a6f63b1de9883af9a8d3e461e361dcd713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>alginates</topic><topic>Alginates - chemistry</topic><topic>Alginates - metabolism</topic><topic>Animals</topic><topic>Applied sciences</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biocompatible Materials - metabolism</topic><topic>byproducts</topic><topic>cell adhesion</topic><topic>Cell Adhesion - physiology</topic><topic>Cells, Cultured</topic><topic>Chemical Sciences</topic><topic>chitosan</topic><topic>Chitosan - chemistry</topic><topic>Chitosan - metabolism</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>crosslinking</topic><topic>Exact sciences and technology</topic><topic>Exchange resins and membranes</topic><topic>Fibroblasts - metabolism</topic><topic>Forms of application and semi-finished materials</topic><topic>glucose</topic><topic>Glucuronic Acid - chemistry</topic><topic>Glucuronic Acid - metabolism</topic><topic>Hexuronic Acids - chemistry</topic><topic>Hexuronic Acids - metabolism</topic><topic>Iridoids - chemistry</topic><topic>Iridoids - metabolism</topic><topic>mass transfer</topic><topic>Material chemistry</topic><topic>Membranes - chemistry</topic><topic>Membranes - metabolism</topic><topic>Membranes, Artificial</topic><topic>Mice</topic><topic>Nanostructures - chemistry</topic><topic>nutrients</topic><topic>oxygen</topic><topic>Permeability</topic><topic>Polymer industry, paints, wood</topic><topic>storage modulus</topic><topic>Technology of polymers</topic><topic>Tensile Strength</topic><topic>tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Joana M</creatorcontrib><creatorcontrib>Duarte, Ana Rita C</creatorcontrib><creatorcontrib>Caridade, Sofia G</creatorcontrib><creatorcontrib>Picart, Catherine</creatorcontrib><creatorcontrib>Reis, Rui L</creatorcontrib><creatorcontrib>Mano, João F</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, Joana M</au><au>Duarte, Ana Rita C</au><au>Caridade, Sofia G</au><au>Picart, Catherine</au><au>Reis, Rui L</au><au>Mano, João F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailored Freestanding Multilayered Membranes Based on Chitosan and Alginate</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2014-10-13</date><risdate>2014</risdate><volume>15</volume><issue>10</issue><spage>3817</spage><epage>3826</epage><pages>3817-3826</pages><issn>1525-7797</issn><issn>1526-4602</issn><eissn>1526-4602</eissn><abstract>Engineering metabolically demanding tissues requires the supply of nutrients, oxygen, and removal of metabolic byproducts, as well as adequate mechanical properties. In this work, we propose the development of chitosan (CHIT)/alginate (ALG) freestanding membranes fabricated by layer-by-layer (LbL) assembly. CHIT/ALG membranes were cross-linked with genipin at a concentration of 1 mg·mL–1 or 5 mg·mL–1. Mass transport properties of glucose and oxygen were evaluated on the freestanding membranes. The diffusion of glucose and oxygen decreases with increasing cross-linking concentration. Mechanical properties were also evaluated in physiological-simulated conditions. Increasing cross-linking density leads to an increase of storage modulus, Young modulus, and ultimate tensile strength, but to a decrease in the maximum hydrostatic pressure. The in vitro biological performance demonstrates that cross-linked films are more favorable for cell adhesion. This work demonstrates the versatility and feasibility of LbL assembly to generate nanostructured constructs with tunable permeability, mechanical, and biological properties.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>25244323</pmid><doi>10.1021/bm501156v</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-7797 |
ispartof | Biomacromolecules, 2014-10, Vol.15 (10), p.3817-3826 |
issn | 1525-7797 1526-4602 1526-4602 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5097862 |
source | MEDLINE; American Chemical Society Journals |
subjects | alginates Alginates - chemistry Alginates - metabolism Animals Applied sciences Biocompatible Materials - chemistry Biocompatible Materials - metabolism byproducts cell adhesion Cell Adhesion - physiology Cells, Cultured Chemical Sciences chitosan Chitosan - chemistry Chitosan - metabolism Cross-Linking Reagents - chemistry crosslinking Exact sciences and technology Exchange resins and membranes Fibroblasts - metabolism Forms of application and semi-finished materials glucose Glucuronic Acid - chemistry Glucuronic Acid - metabolism Hexuronic Acids - chemistry Hexuronic Acids - metabolism Iridoids - chemistry Iridoids - metabolism mass transfer Material chemistry Membranes - chemistry Membranes - metabolism Membranes, Artificial Mice Nanostructures - chemistry nutrients oxygen Permeability Polymer industry, paints, wood storage modulus Technology of polymers Tensile Strength tissues |
title | Tailored Freestanding Multilayered Membranes Based on Chitosan and Alginate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T23%3A22%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailored%20Freestanding%20Multilayered%20Membranes%20Based%20on%20Chitosan%20and%20Alginate&rft.jtitle=Biomacromolecules&rft.au=Silva,%20Joana%20M&rft.date=2014-10-13&rft.volume=15&rft.issue=10&rft.spage=3817&rft.epage=3826&rft.pages=3817-3826&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/bm501156v&rft_dat=%3Cproquest_pubme%3E1635037449%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1635037449&rft_id=info:pmid/25244323&rfr_iscdi=true |