mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models

Finite mixture models are being used increasingly to model a wide variety of random phenomena for clustering, classification and density estimation. is a powerful and popular package which allows modelling of data as a Gaussian finite mixture with different covariance structures and different number...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The R journal 2016-08, Vol.8 (1), p.289-317
Hauptverfasser: Scrucca, Luca, Fop, Michael, Murphy, T Brendan, Raftery, Adrian E
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 317
container_issue 1
container_start_page 289
container_title The R journal
container_volume 8
creator Scrucca, Luca
Fop, Michael
Murphy, T Brendan
Raftery, Adrian E
description Finite mixture models are being used increasingly to model a wide variety of random phenomena for clustering, classification and density estimation. is a powerful and popular package which allows modelling of data as a Gaussian finite mixture with different covariance structures and different numbers of mixture components, for a variety of purposes of analysis. Recently, version 5 of the package has been made available on CRAN. This updated version adds new covariance structures, dimension reduction capabilities for visualisation, model selection criteria, initialisation strategies for the EM algorithm, and bootstrap-based inference, making it a full-featured R package for data analysis via finite mixture modelling.
doi_str_mv 10.32614/rj-2016-021
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5096736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1837027395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-19885ba71820e58d5852cea620c8fe6e17cf774719b5ddf715ac30cb4bad31f63</originalsourceid><addsrcrecordid>eNpVkc1LAzEQxYMoWqo3z5KjB1fzsdlkPQhSa1Uqgug5ZrPZGtlmNcmK_e9NrZY6l3nM_Hgz8AA4xOiUkgLnZ_4tIwgXGSJ4CwwI4jTLBSu3N_QeOAjhDaWiFAuGd8Ee4QILXuIBeJnrtg8RsnM4WgrjrZudJK1CsI3VKtrOQeVqeGVcsHEBxyHa-Wr8HBIMJ6pPrHLw2jobDby3X7H3qXe1acM-2GlUG8zBbx-C5-vx0-gmmz5MbkeX00znJY0ZLoVgleJYEGSYqJlgRBtVEKRFYwqDuW44zzkuK1bXDcdMaYp0lVeqprgp6BBcrHzf-2puam1c9KqV7z496xeyU1b-3zj7Kmfdp2SoLDhdGhz_GvjuozchyrkN2rStcqbrg8SCckQ4LVlCT1ao9l0I3jTrMxjJn1zk451c5iJTLgk_2nxtDf-lQL8BbVWJ_Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1837027395</pqid></control><display><type>article</type><title>mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Scrucca, Luca ; Fop, Michael ; Murphy, T Brendan ; Raftery, Adrian E</creator><creatorcontrib>Scrucca, Luca ; Fop, Michael ; Murphy, T Brendan ; Raftery, Adrian E</creatorcontrib><description>Finite mixture models are being used increasingly to model a wide variety of random phenomena for clustering, classification and density estimation. is a powerful and popular package which allows modelling of data as a Gaussian finite mixture with different covariance structures and different numbers of mixture components, for a variety of purposes of analysis. Recently, version 5 of the package has been made available on CRAN. This updated version adds new covariance structures, dimension reduction capabilities for visualisation, model selection criteria, initialisation strategies for the EM algorithm, and bootstrap-based inference, making it a full-featured R package for data analysis via finite mixture modelling.</description><identifier>ISSN: 2073-4859</identifier><identifier>EISSN: 2073-4859</identifier><identifier>DOI: 10.32614/rj-2016-021</identifier><identifier>PMID: 27818791</identifier><language>eng</language><publisher>United States</publisher><ispartof>The R journal, 2016-08, Vol.8 (1), p.289-317</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-19885ba71820e58d5852cea620c8fe6e17cf774719b5ddf715ac30cb4bad31f63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27818791$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scrucca, Luca</creatorcontrib><creatorcontrib>Fop, Michael</creatorcontrib><creatorcontrib>Murphy, T Brendan</creatorcontrib><creatorcontrib>Raftery, Adrian E</creatorcontrib><title>mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models</title><title>The R journal</title><addtitle>R J</addtitle><description>Finite mixture models are being used increasingly to model a wide variety of random phenomena for clustering, classification and density estimation. is a powerful and popular package which allows modelling of data as a Gaussian finite mixture with different covariance structures and different numbers of mixture components, for a variety of purposes of analysis. Recently, version 5 of the package has been made available on CRAN. This updated version adds new covariance structures, dimension reduction capabilities for visualisation, model selection criteria, initialisation strategies for the EM algorithm, and bootstrap-based inference, making it a full-featured R package for data analysis via finite mixture modelling.</description><issn>2073-4859</issn><issn>2073-4859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpVkc1LAzEQxYMoWqo3z5KjB1fzsdlkPQhSa1Uqgug5ZrPZGtlmNcmK_e9NrZY6l3nM_Hgz8AA4xOiUkgLnZ_4tIwgXGSJ4CwwI4jTLBSu3N_QeOAjhDaWiFAuGd8Ee4QILXuIBeJnrtg8RsnM4WgrjrZudJK1CsI3VKtrOQeVqeGVcsHEBxyHa-Wr8HBIMJ6pPrHLw2jobDby3X7H3qXe1acM-2GlUG8zBbx-C5-vx0-gmmz5MbkeX00znJY0ZLoVgleJYEGSYqJlgRBtVEKRFYwqDuW44zzkuK1bXDcdMaYp0lVeqprgp6BBcrHzf-2puam1c9KqV7z496xeyU1b-3zj7Kmfdp2SoLDhdGhz_GvjuozchyrkN2rStcqbrg8SCckQ4LVlCT1ao9l0I3jTrMxjJn1zk451c5iJTLgk_2nxtDf-lQL8BbVWJ_Q</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Scrucca, Luca</creator><creator>Fop, Michael</creator><creator>Murphy, T Brendan</creator><creator>Raftery, Adrian E</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160801</creationdate><title>mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models</title><author>Scrucca, Luca ; Fop, Michael ; Murphy, T Brendan ; Raftery, Adrian E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-19885ba71820e58d5852cea620c8fe6e17cf774719b5ddf715ac30cb4bad31f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scrucca, Luca</creatorcontrib><creatorcontrib>Fop, Michael</creatorcontrib><creatorcontrib>Murphy, T Brendan</creatorcontrib><creatorcontrib>Raftery, Adrian E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The R journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scrucca, Luca</au><au>Fop, Michael</au><au>Murphy, T Brendan</au><au>Raftery, Adrian E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models</atitle><jtitle>The R journal</jtitle><addtitle>R J</addtitle><date>2016-08-01</date><risdate>2016</risdate><volume>8</volume><issue>1</issue><spage>289</spage><epage>317</epage><pages>289-317</pages><issn>2073-4859</issn><eissn>2073-4859</eissn><abstract>Finite mixture models are being used increasingly to model a wide variety of random phenomena for clustering, classification and density estimation. is a powerful and popular package which allows modelling of data as a Gaussian finite mixture with different covariance structures and different numbers of mixture components, for a variety of purposes of analysis. Recently, version 5 of the package has been made available on CRAN. This updated version adds new covariance structures, dimension reduction capabilities for visualisation, model selection criteria, initialisation strategies for the EM algorithm, and bootstrap-based inference, making it a full-featured R package for data analysis via finite mixture modelling.</abstract><cop>United States</cop><pmid>27818791</pmid><doi>10.32614/rj-2016-021</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4859
ispartof The R journal, 2016-08, Vol.8 (1), p.289-317
issn 2073-4859
2073-4859
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5096736
source EZB-FREE-00999 freely available EZB journals
title mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A53%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=mclust%205:%20Clustering,%20Classification%20and%20Density%20Estimation%20Using%20Gaussian%20Finite%20Mixture%20Models&rft.jtitle=The%20R%20journal&rft.au=Scrucca,%20Luca&rft.date=2016-08-01&rft.volume=8&rft.issue=1&rft.spage=289&rft.epage=317&rft.pages=289-317&rft.issn=2073-4859&rft.eissn=2073-4859&rft_id=info:doi/10.32614/rj-2016-021&rft_dat=%3Cproquest_pubme%3E1837027395%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1837027395&rft_id=info:pmid/27818791&rfr_iscdi=true