Selective cerebral perfusion prevents abnormalities in glutamate cycling and neuronal apoptosis in a model of infant deep hypothermic circulatory arrest and reperfusion
Deep hypothermic circulatory arrest is often required for the repair of complex congenital cardiac defects in infants. However, deep hypothermic circulatory arrest induces neuroapoptosis associated with later development of neurocognitive abnormalities. Selective cerebral perfusion theoretically pro...
Gespeichert in:
Veröffentlicht in: | Journal of cerebral blood flow and metabolism 2016-11, Vol.36 (11), p.1992-2004 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2004 |
---|---|
container_issue | 11 |
container_start_page | 1992 |
container_title | Journal of cerebral blood flow and metabolism |
container_volume | 36 |
creator | Kajimoto, Masaki Ledee, Dolena R Olson, Aaron K Isern, Nancy G Robillard-Frayne, Isabelle Des Rosiers, Christine Portman, Michael A |
description | Deep hypothermic circulatory arrest is often required for the repair of complex congenital cardiac defects in infants. However, deep hypothermic circulatory arrest induces neuroapoptosis associated with later development of neurocognitive abnormalities. Selective cerebral perfusion theoretically provides superior neural protection possibly through modifications in cerebral substrate oxidation and closely integrated glutamate cycling. We tested the hypothesis that selective cerebral perfusion modulates glucose utilization, and ameliorates abnormalities in glutamate flux, which occur in association with neuroapoptosis during deep hypothermic circulatory arrest. Eighteen infant male Yorkshire piglets were assigned randomly to two groups of seven (deep hypothermic circulatory arrest or deep hypothermic circulatory arrest with selective cerebral perfusion for 60 minutes at 18℃) and four control pigs without cardiopulmonary bypass support. Carbon-13-labeled glucose as a metabolic tracer was infused, and gas chromatography–mass spectrometry and nuclear magnetic resonance were used for metabolic analysis in the frontal cortex. Following 2.5 h of cerebral reperfusion, we observed similar cerebral adenosine triphosphate levels, absolute levels of lactate and citric acid cycle intermediates, and carbon-13 enrichment among three groups. However, deep hypothermic circulatory arrest induced significant abnormalities in glutamate cycling resulting in reduced glutamate/glutamine and elevated γ-aminobutyric acid/glutamate along with neuroapoptosis, which were all prevented by selective cerebral perfusion. The data suggest that selective cerebral perfusion prevents these modifications in glutamate/glutamine/γ-aminobutyric acid cycling and protects the cerebral cortex from apoptosis. |
doi_str_mv | 10.1177/0271678X16666846 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5094314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0271678X16666846</sage_id><sourcerecordid>1835523696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-c35ed18428a0c0ccc82896e481c46f10e01c31c268a1bc0e68ee870da4311213</originalsourceid><addsrcrecordid>eNp1ksuKFDEUhoMoTju6dyXBlZvSnLqk0htBhvECAy6chbuQPnWqO0MqKZNUQ7-Rj2l6emxUMJsQ_v98OTfGXoJ4C9D370Tdg-zVd5DlqFY-YivounXVC5CP2eooV0f9gj1L6U4IoZque8ou6l6KtgGxYj-_kSPMdk8cKdImGsdniuOSbPB8jrQnnxM3Gx_iZJzNlhK3nm_dks1kcgk7oLN-y40fuKclBl8QZg5zDsneew2fwkCOh7G8RuMzH4hmvjvMIe8oThY52oiLMznEAzcxUsr3vEjnXJ6zJ6NxiV483Jfs9uP17dXn6ubrpy9XH24q7BrIFTYdDaDaWhmBAhFVrdaSWgXYyhEECcAGsJbKwAYFSUWkejGY0g6ooblk70_YedlMNGCpvrREz9FOJh50MFb_rXi709uw151YF0RbAK9PgJCy1QltJtxh8L50WUMrpIK6mN48_BLDj6VUqyebkJwznsKSNBznVDdyLYtVnKwYQ0qRxnMuIPRxCfS_S1BCXv1Zwzng99SLoToZktmSvgtLLDNL_wf-AvAnv5M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835523696</pqid></control><display><type>article</type><title>Selective cerebral perfusion prevents abnormalities in glutamate cycling and neuronal apoptosis in a model of infant deep hypothermic circulatory arrest and reperfusion</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>SAGE Complete</source><source>PubMed Central</source><creator>Kajimoto, Masaki ; Ledee, Dolena R ; Olson, Aaron K ; Isern, Nancy G ; Robillard-Frayne, Isabelle ; Des Rosiers, Christine ; Portman, Michael A</creator><creatorcontrib>Kajimoto, Masaki ; Ledee, Dolena R ; Olson, Aaron K ; Isern, Nancy G ; Robillard-Frayne, Isabelle ; Des Rosiers, Christine ; Portman, Michael A ; Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><description>Deep hypothermic circulatory arrest is often required for the repair of complex congenital cardiac defects in infants. However, deep hypothermic circulatory arrest induces neuroapoptosis associated with later development of neurocognitive abnormalities. Selective cerebral perfusion theoretically provides superior neural protection possibly through modifications in cerebral substrate oxidation and closely integrated glutamate cycling. We tested the hypothesis that selective cerebral perfusion modulates glucose utilization, and ameliorates abnormalities in glutamate flux, which occur in association with neuroapoptosis during deep hypothermic circulatory arrest. Eighteen infant male Yorkshire piglets were assigned randomly to two groups of seven (deep hypothermic circulatory arrest or deep hypothermic circulatory arrest with selective cerebral perfusion for 60 minutes at 18℃) and four control pigs without cardiopulmonary bypass support. Carbon-13-labeled glucose as a metabolic tracer was infused, and gas chromatography–mass spectrometry and nuclear magnetic resonance were used for metabolic analysis in the frontal cortex. Following 2.5 h of cerebral reperfusion, we observed similar cerebral adenosine triphosphate levels, absolute levels of lactate and citric acid cycle intermediates, and carbon-13 enrichment among three groups. However, deep hypothermic circulatory arrest induced significant abnormalities in glutamate cycling resulting in reduced glutamate/glutamine and elevated γ-aminobutyric acid/glutamate along with neuroapoptosis, which were all prevented by selective cerebral perfusion. The data suggest that selective cerebral perfusion prevents these modifications in glutamate/glutamine/γ-aminobutyric acid cycling and protects the cerebral cortex from apoptosis.</description><identifier>ISSN: 0271-678X</identifier><identifier>EISSN: 1559-7016</identifier><identifier>DOI: 10.1177/0271678X16666846</identifier><identifier>PMID: 27604310</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>60 APPLIED LIFE SCIENCES ; Animals ; Apoptosis ; BASIC BIOLOGICAL SCIENCES ; Cardiopulmonary Bypass ; Cerebral Cortex - blood supply ; Cerebral Cortex - metabolism ; Cerebral Cortex - pathology ; Cerebral Cortex - physiopathology ; Cerebrovascular Circulation - physiology ; Environmental Molecular Sciences Laboratory ; Glucose - metabolism ; Glutamic Acid - metabolism ; Hypothermia, Induced ; Male ; Neurons - metabolism ; Neurons - pathology ; Original ; Perfusion ; Reperfusion ; Swine</subject><ispartof>Journal of cerebral blood flow and metabolism, 2016-11, Vol.36 (11), p.1992-2004</ispartof><rights>The Author(s) 2016</rights><rights>The Author(s) 2016.</rights><rights>The Author(s) 2016 2016 International Society for Cerebral Blood Flow and Metabolism</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c531t-c35ed18428a0c0ccc82896e481c46f10e01c31c268a1bc0e68ee870da4311213</citedby><cites>FETCH-LOGICAL-c531t-c35ed18428a0c0ccc82896e481c46f10e01c31c268a1bc0e68ee870da4311213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5094314/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5094314/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,21798,27901,27902,43597,43598,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27604310$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1406812$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kajimoto, Masaki</creatorcontrib><creatorcontrib>Ledee, Dolena R</creatorcontrib><creatorcontrib>Olson, Aaron K</creatorcontrib><creatorcontrib>Isern, Nancy G</creatorcontrib><creatorcontrib>Robillard-Frayne, Isabelle</creatorcontrib><creatorcontrib>Des Rosiers, Christine</creatorcontrib><creatorcontrib>Portman, Michael A</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><title>Selective cerebral perfusion prevents abnormalities in glutamate cycling and neuronal apoptosis in a model of infant deep hypothermic circulatory arrest and reperfusion</title><title>Journal of cerebral blood flow and metabolism</title><addtitle>J Cereb Blood Flow Metab</addtitle><description>Deep hypothermic circulatory arrest is often required for the repair of complex congenital cardiac defects in infants. However, deep hypothermic circulatory arrest induces neuroapoptosis associated with later development of neurocognitive abnormalities. Selective cerebral perfusion theoretically provides superior neural protection possibly through modifications in cerebral substrate oxidation and closely integrated glutamate cycling. We tested the hypothesis that selective cerebral perfusion modulates glucose utilization, and ameliorates abnormalities in glutamate flux, which occur in association with neuroapoptosis during deep hypothermic circulatory arrest. Eighteen infant male Yorkshire piglets were assigned randomly to two groups of seven (deep hypothermic circulatory arrest or deep hypothermic circulatory arrest with selective cerebral perfusion for 60 minutes at 18℃) and four control pigs without cardiopulmonary bypass support. Carbon-13-labeled glucose as a metabolic tracer was infused, and gas chromatography–mass spectrometry and nuclear magnetic resonance were used for metabolic analysis in the frontal cortex. Following 2.5 h of cerebral reperfusion, we observed similar cerebral adenosine triphosphate levels, absolute levels of lactate and citric acid cycle intermediates, and carbon-13 enrichment among three groups. However, deep hypothermic circulatory arrest induced significant abnormalities in glutamate cycling resulting in reduced glutamate/glutamine and elevated γ-aminobutyric acid/glutamate along with neuroapoptosis, which were all prevented by selective cerebral perfusion. The data suggest that selective cerebral perfusion prevents these modifications in glutamate/glutamine/γ-aminobutyric acid cycling and protects the cerebral cortex from apoptosis.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Cardiopulmonary Bypass</subject><subject>Cerebral Cortex - blood supply</subject><subject>Cerebral Cortex - metabolism</subject><subject>Cerebral Cortex - pathology</subject><subject>Cerebral Cortex - physiopathology</subject><subject>Cerebrovascular Circulation - physiology</subject><subject>Environmental Molecular Sciences Laboratory</subject><subject>Glucose - metabolism</subject><subject>Glutamic Acid - metabolism</subject><subject>Hypothermia, Induced</subject><subject>Male</subject><subject>Neurons - metabolism</subject><subject>Neurons - pathology</subject><subject>Original</subject><subject>Perfusion</subject><subject>Reperfusion</subject><subject>Swine</subject><issn>0271-678X</issn><issn>1559-7016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1ksuKFDEUhoMoTju6dyXBlZvSnLqk0htBhvECAy6chbuQPnWqO0MqKZNUQ7-Rj2l6emxUMJsQ_v98OTfGXoJ4C9D370Tdg-zVd5DlqFY-YivounXVC5CP2eooV0f9gj1L6U4IoZque8ou6l6KtgGxYj-_kSPMdk8cKdImGsdniuOSbPB8jrQnnxM3Gx_iZJzNlhK3nm_dks1kcgk7oLN-y40fuKclBl8QZg5zDsneew2fwkCOh7G8RuMzH4hmvjvMIe8oThY52oiLMznEAzcxUsr3vEjnXJ6zJ6NxiV483Jfs9uP17dXn6ubrpy9XH24q7BrIFTYdDaDaWhmBAhFVrdaSWgXYyhEECcAGsJbKwAYFSUWkejGY0g6ooblk70_YedlMNGCpvrREz9FOJh50MFb_rXi709uw151YF0RbAK9PgJCy1QltJtxh8L50WUMrpIK6mN48_BLDj6VUqyebkJwznsKSNBznVDdyLYtVnKwYQ0qRxnMuIPRxCfS_S1BCXv1Zwzng99SLoToZktmSvgtLLDNL_wf-AvAnv5M</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Kajimoto, Masaki</creator><creator>Ledee, Dolena R</creator><creator>Olson, Aaron K</creator><creator>Isern, Nancy G</creator><creator>Robillard-Frayne, Isabelle</creator><creator>Des Rosiers, Christine</creator><creator>Portman, Michael A</creator><general>SAGE Publications</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20161101</creationdate><title>Selective cerebral perfusion prevents abnormalities in glutamate cycling and neuronal apoptosis in a model of infant deep hypothermic circulatory arrest and reperfusion</title><author>Kajimoto, Masaki ; Ledee, Dolena R ; Olson, Aaron K ; Isern, Nancy G ; Robillard-Frayne, Isabelle ; Des Rosiers, Christine ; Portman, Michael A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-c35ed18428a0c0ccc82896e481c46f10e01c31c268a1bc0e68ee870da4311213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Cardiopulmonary Bypass</topic><topic>Cerebral Cortex - blood supply</topic><topic>Cerebral Cortex - metabolism</topic><topic>Cerebral Cortex - pathology</topic><topic>Cerebral Cortex - physiopathology</topic><topic>Cerebrovascular Circulation - physiology</topic><topic>Environmental Molecular Sciences Laboratory</topic><topic>Glucose - metabolism</topic><topic>Glutamic Acid - metabolism</topic><topic>Hypothermia, Induced</topic><topic>Male</topic><topic>Neurons - metabolism</topic><topic>Neurons - pathology</topic><topic>Original</topic><topic>Perfusion</topic><topic>Reperfusion</topic><topic>Swine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kajimoto, Masaki</creatorcontrib><creatorcontrib>Ledee, Dolena R</creatorcontrib><creatorcontrib>Olson, Aaron K</creatorcontrib><creatorcontrib>Isern, Nancy G</creatorcontrib><creatorcontrib>Robillard-Frayne, Isabelle</creatorcontrib><creatorcontrib>Des Rosiers, Christine</creatorcontrib><creatorcontrib>Portman, Michael A</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cerebral blood flow and metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kajimoto, Masaki</au><au>Ledee, Dolena R</au><au>Olson, Aaron K</au><au>Isern, Nancy G</au><au>Robillard-Frayne, Isabelle</au><au>Des Rosiers, Christine</au><au>Portman, Michael A</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective cerebral perfusion prevents abnormalities in glutamate cycling and neuronal apoptosis in a model of infant deep hypothermic circulatory arrest and reperfusion</atitle><jtitle>Journal of cerebral blood flow and metabolism</jtitle><addtitle>J Cereb Blood Flow Metab</addtitle><date>2016-11-01</date><risdate>2016</risdate><volume>36</volume><issue>11</issue><spage>1992</spage><epage>2004</epage><pages>1992-2004</pages><issn>0271-678X</issn><eissn>1559-7016</eissn><abstract>Deep hypothermic circulatory arrest is often required for the repair of complex congenital cardiac defects in infants. However, deep hypothermic circulatory arrest induces neuroapoptosis associated with later development of neurocognitive abnormalities. Selective cerebral perfusion theoretically provides superior neural protection possibly through modifications in cerebral substrate oxidation and closely integrated glutamate cycling. We tested the hypothesis that selective cerebral perfusion modulates glucose utilization, and ameliorates abnormalities in glutamate flux, which occur in association with neuroapoptosis during deep hypothermic circulatory arrest. Eighteen infant male Yorkshire piglets were assigned randomly to two groups of seven (deep hypothermic circulatory arrest or deep hypothermic circulatory arrest with selective cerebral perfusion for 60 minutes at 18℃) and four control pigs without cardiopulmonary bypass support. Carbon-13-labeled glucose as a metabolic tracer was infused, and gas chromatography–mass spectrometry and nuclear magnetic resonance were used for metabolic analysis in the frontal cortex. Following 2.5 h of cerebral reperfusion, we observed similar cerebral adenosine triphosphate levels, absolute levels of lactate and citric acid cycle intermediates, and carbon-13 enrichment among three groups. However, deep hypothermic circulatory arrest induced significant abnormalities in glutamate cycling resulting in reduced glutamate/glutamine and elevated γ-aminobutyric acid/glutamate along with neuroapoptosis, which were all prevented by selective cerebral perfusion. The data suggest that selective cerebral perfusion prevents these modifications in glutamate/glutamine/γ-aminobutyric acid cycling and protects the cerebral cortex from apoptosis.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>27604310</pmid><doi>10.1177/0271678X16666846</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0271-678X |
ispartof | Journal of cerebral blood flow and metabolism, 2016-11, Vol.36 (11), p.1992-2004 |
issn | 0271-678X 1559-7016 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5094314 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; SAGE Complete; PubMed Central |
subjects | 60 APPLIED LIFE SCIENCES Animals Apoptosis BASIC BIOLOGICAL SCIENCES Cardiopulmonary Bypass Cerebral Cortex - blood supply Cerebral Cortex - metabolism Cerebral Cortex - pathology Cerebral Cortex - physiopathology Cerebrovascular Circulation - physiology Environmental Molecular Sciences Laboratory Glucose - metabolism Glutamic Acid - metabolism Hypothermia, Induced Male Neurons - metabolism Neurons - pathology Original Perfusion Reperfusion Swine |
title | Selective cerebral perfusion prevents abnormalities in glutamate cycling and neuronal apoptosis in a model of infant deep hypothermic circulatory arrest and reperfusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A27%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20cerebral%20perfusion%20prevents%20abnormalities%20in%20glutamate%20cycling%20and%20neuronal%20apoptosis%20in%20a%20model%20of%20infant%20deep%20hypothermic%20circulatory%20arrest%20and%20reperfusion&rft.jtitle=Journal%20of%20cerebral%20blood%20flow%20and%20metabolism&rft.au=Kajimoto,%20Masaki&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(US),%20Environmental%20Molecular%20Sciences%20Laboratory%20(EMSL)&rft.date=2016-11-01&rft.volume=36&rft.issue=11&rft.spage=1992&rft.epage=2004&rft.pages=1992-2004&rft.issn=0271-678X&rft.eissn=1559-7016&rft_id=info:doi/10.1177/0271678X16666846&rft_dat=%3Cproquest_pubme%3E1835523696%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835523696&rft_id=info:pmid/27604310&rft_sage_id=10.1177_0271678X16666846&rfr_iscdi=true |