Selective cerebral perfusion prevents abnormalities in glutamate cycling and neuronal apoptosis in a model of infant deep hypothermic circulatory arrest and reperfusion

Deep hypothermic circulatory arrest is often required for the repair of complex congenital cardiac defects in infants. However, deep hypothermic circulatory arrest induces neuroapoptosis associated with later development of neurocognitive abnormalities. Selective cerebral perfusion theoretically pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cerebral blood flow and metabolism 2016-11, Vol.36 (11), p.1992-2004
Hauptverfasser: Kajimoto, Masaki, Ledee, Dolena R, Olson, Aaron K, Isern, Nancy G, Robillard-Frayne, Isabelle, Des Rosiers, Christine, Portman, Michael A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2004
container_issue 11
container_start_page 1992
container_title Journal of cerebral blood flow and metabolism
container_volume 36
creator Kajimoto, Masaki
Ledee, Dolena R
Olson, Aaron K
Isern, Nancy G
Robillard-Frayne, Isabelle
Des Rosiers, Christine
Portman, Michael A
description Deep hypothermic circulatory arrest is often required for the repair of complex congenital cardiac defects in infants. However, deep hypothermic circulatory arrest induces neuroapoptosis associated with later development of neurocognitive abnormalities. Selective cerebral perfusion theoretically provides superior neural protection possibly through modifications in cerebral substrate oxidation and closely integrated glutamate cycling. We tested the hypothesis that selective cerebral perfusion modulates glucose utilization, and ameliorates abnormalities in glutamate flux, which occur in association with neuroapoptosis during deep hypothermic circulatory arrest. Eighteen infant male Yorkshire piglets were assigned randomly to two groups of seven (deep hypothermic circulatory arrest or deep hypothermic circulatory arrest with selective cerebral perfusion for 60 minutes at 18℃) and four control pigs without cardiopulmonary bypass support. Carbon-13-labeled glucose as a metabolic tracer was infused, and gas chromatography–mass spectrometry and nuclear magnetic resonance were used for metabolic analysis in the frontal cortex. Following 2.5 h of cerebral reperfusion, we observed similar cerebral adenosine triphosphate levels, absolute levels of lactate and citric acid cycle intermediates, and carbon-13 enrichment among three groups. However, deep hypothermic circulatory arrest induced significant abnormalities in glutamate cycling resulting in reduced glutamate/glutamine and elevated γ-aminobutyric acid/glutamate along with neuroapoptosis, which were all prevented by selective cerebral perfusion. The data suggest that selective cerebral perfusion prevents these modifications in glutamate/glutamine/γ-aminobutyric acid cycling and protects the cerebral cortex from apoptosis.
doi_str_mv 10.1177/0271678X16666846
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5094314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0271678X16666846</sage_id><sourcerecordid>1835523696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-c35ed18428a0c0ccc82896e481c46f10e01c31c268a1bc0e68ee870da4311213</originalsourceid><addsrcrecordid>eNp1ksuKFDEUhoMoTju6dyXBlZvSnLqk0htBhvECAy6chbuQPnWqO0MqKZNUQ7-Rj2l6emxUMJsQ_v98OTfGXoJ4C9D370Tdg-zVd5DlqFY-YivounXVC5CP2eooV0f9gj1L6U4IoZque8ou6l6KtgGxYj-_kSPMdk8cKdImGsdniuOSbPB8jrQnnxM3Gx_iZJzNlhK3nm_dks1kcgk7oLN-y40fuKclBl8QZg5zDsneew2fwkCOh7G8RuMzH4hmvjvMIe8oThY52oiLMznEAzcxUsr3vEjnXJ6zJ6NxiV483Jfs9uP17dXn6ubrpy9XH24q7BrIFTYdDaDaWhmBAhFVrdaSWgXYyhEECcAGsJbKwAYFSUWkejGY0g6ooblk70_YedlMNGCpvrREz9FOJh50MFb_rXi709uw151YF0RbAK9PgJCy1QltJtxh8L50WUMrpIK6mN48_BLDj6VUqyebkJwznsKSNBznVDdyLYtVnKwYQ0qRxnMuIPRxCfS_S1BCXv1Zwzng99SLoToZktmSvgtLLDNL_wf-AvAnv5M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835523696</pqid></control><display><type>article</type><title>Selective cerebral perfusion prevents abnormalities in glutamate cycling and neuronal apoptosis in a model of infant deep hypothermic circulatory arrest and reperfusion</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>SAGE Complete</source><source>PubMed Central</source><creator>Kajimoto, Masaki ; Ledee, Dolena R ; Olson, Aaron K ; Isern, Nancy G ; Robillard-Frayne, Isabelle ; Des Rosiers, Christine ; Portman, Michael A</creator><creatorcontrib>Kajimoto, Masaki ; Ledee, Dolena R ; Olson, Aaron K ; Isern, Nancy G ; Robillard-Frayne, Isabelle ; Des Rosiers, Christine ; Portman, Michael A ; Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><description>Deep hypothermic circulatory arrest is often required for the repair of complex congenital cardiac defects in infants. However, deep hypothermic circulatory arrest induces neuroapoptosis associated with later development of neurocognitive abnormalities. Selective cerebral perfusion theoretically provides superior neural protection possibly through modifications in cerebral substrate oxidation and closely integrated glutamate cycling. We tested the hypothesis that selective cerebral perfusion modulates glucose utilization, and ameliorates abnormalities in glutamate flux, which occur in association with neuroapoptosis during deep hypothermic circulatory arrest. Eighteen infant male Yorkshire piglets were assigned randomly to two groups of seven (deep hypothermic circulatory arrest or deep hypothermic circulatory arrest with selective cerebral perfusion for 60 minutes at 18℃) and four control pigs without cardiopulmonary bypass support. Carbon-13-labeled glucose as a metabolic tracer was infused, and gas chromatography–mass spectrometry and nuclear magnetic resonance were used for metabolic analysis in the frontal cortex. Following 2.5 h of cerebral reperfusion, we observed similar cerebral adenosine triphosphate levels, absolute levels of lactate and citric acid cycle intermediates, and carbon-13 enrichment among three groups. However, deep hypothermic circulatory arrest induced significant abnormalities in glutamate cycling resulting in reduced glutamate/glutamine and elevated γ-aminobutyric acid/glutamate along with neuroapoptosis, which were all prevented by selective cerebral perfusion. The data suggest that selective cerebral perfusion prevents these modifications in glutamate/glutamine/γ-aminobutyric acid cycling and protects the cerebral cortex from apoptosis.</description><identifier>ISSN: 0271-678X</identifier><identifier>EISSN: 1559-7016</identifier><identifier>DOI: 10.1177/0271678X16666846</identifier><identifier>PMID: 27604310</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>60 APPLIED LIFE SCIENCES ; Animals ; Apoptosis ; BASIC BIOLOGICAL SCIENCES ; Cardiopulmonary Bypass ; Cerebral Cortex - blood supply ; Cerebral Cortex - metabolism ; Cerebral Cortex - pathology ; Cerebral Cortex - physiopathology ; Cerebrovascular Circulation - physiology ; Environmental Molecular Sciences Laboratory ; Glucose - metabolism ; Glutamic Acid - metabolism ; Hypothermia, Induced ; Male ; Neurons - metabolism ; Neurons - pathology ; Original ; Perfusion ; Reperfusion ; Swine</subject><ispartof>Journal of cerebral blood flow and metabolism, 2016-11, Vol.36 (11), p.1992-2004</ispartof><rights>The Author(s) 2016</rights><rights>The Author(s) 2016.</rights><rights>The Author(s) 2016 2016 International Society for Cerebral Blood Flow and Metabolism</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c531t-c35ed18428a0c0ccc82896e481c46f10e01c31c268a1bc0e68ee870da4311213</citedby><cites>FETCH-LOGICAL-c531t-c35ed18428a0c0ccc82896e481c46f10e01c31c268a1bc0e68ee870da4311213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5094314/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5094314/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,21798,27901,27902,43597,43598,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27604310$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1406812$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kajimoto, Masaki</creatorcontrib><creatorcontrib>Ledee, Dolena R</creatorcontrib><creatorcontrib>Olson, Aaron K</creatorcontrib><creatorcontrib>Isern, Nancy G</creatorcontrib><creatorcontrib>Robillard-Frayne, Isabelle</creatorcontrib><creatorcontrib>Des Rosiers, Christine</creatorcontrib><creatorcontrib>Portman, Michael A</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><title>Selective cerebral perfusion prevents abnormalities in glutamate cycling and neuronal apoptosis in a model of infant deep hypothermic circulatory arrest and reperfusion</title><title>Journal of cerebral blood flow and metabolism</title><addtitle>J Cereb Blood Flow Metab</addtitle><description>Deep hypothermic circulatory arrest is often required for the repair of complex congenital cardiac defects in infants. However, deep hypothermic circulatory arrest induces neuroapoptosis associated with later development of neurocognitive abnormalities. Selective cerebral perfusion theoretically provides superior neural protection possibly through modifications in cerebral substrate oxidation and closely integrated glutamate cycling. We tested the hypothesis that selective cerebral perfusion modulates glucose utilization, and ameliorates abnormalities in glutamate flux, which occur in association with neuroapoptosis during deep hypothermic circulatory arrest. Eighteen infant male Yorkshire piglets were assigned randomly to two groups of seven (deep hypothermic circulatory arrest or deep hypothermic circulatory arrest with selective cerebral perfusion for 60 minutes at 18℃) and four control pigs without cardiopulmonary bypass support. Carbon-13-labeled glucose as a metabolic tracer was infused, and gas chromatography–mass spectrometry and nuclear magnetic resonance were used for metabolic analysis in the frontal cortex. Following 2.5 h of cerebral reperfusion, we observed similar cerebral adenosine triphosphate levels, absolute levels of lactate and citric acid cycle intermediates, and carbon-13 enrichment among three groups. However, deep hypothermic circulatory arrest induced significant abnormalities in glutamate cycling resulting in reduced glutamate/glutamine and elevated γ-aminobutyric acid/glutamate along with neuroapoptosis, which were all prevented by selective cerebral perfusion. The data suggest that selective cerebral perfusion prevents these modifications in glutamate/glutamine/γ-aminobutyric acid cycling and protects the cerebral cortex from apoptosis.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Cardiopulmonary Bypass</subject><subject>Cerebral Cortex - blood supply</subject><subject>Cerebral Cortex - metabolism</subject><subject>Cerebral Cortex - pathology</subject><subject>Cerebral Cortex - physiopathology</subject><subject>Cerebrovascular Circulation - physiology</subject><subject>Environmental Molecular Sciences Laboratory</subject><subject>Glucose - metabolism</subject><subject>Glutamic Acid - metabolism</subject><subject>Hypothermia, Induced</subject><subject>Male</subject><subject>Neurons - metabolism</subject><subject>Neurons - pathology</subject><subject>Original</subject><subject>Perfusion</subject><subject>Reperfusion</subject><subject>Swine</subject><issn>0271-678X</issn><issn>1559-7016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1ksuKFDEUhoMoTju6dyXBlZvSnLqk0htBhvECAy6chbuQPnWqO0MqKZNUQ7-Rj2l6emxUMJsQ_v98OTfGXoJ4C9D370Tdg-zVd5DlqFY-YivounXVC5CP2eooV0f9gj1L6U4IoZque8ou6l6KtgGxYj-_kSPMdk8cKdImGsdniuOSbPB8jrQnnxM3Gx_iZJzNlhK3nm_dks1kcgk7oLN-y40fuKclBl8QZg5zDsneew2fwkCOh7G8RuMzH4hmvjvMIe8oThY52oiLMznEAzcxUsr3vEjnXJ6zJ6NxiV483Jfs9uP17dXn6ubrpy9XH24q7BrIFTYdDaDaWhmBAhFVrdaSWgXYyhEECcAGsJbKwAYFSUWkejGY0g6ooblk70_YedlMNGCpvrREz9FOJh50MFb_rXi709uw151YF0RbAK9PgJCy1QltJtxh8L50WUMrpIK6mN48_BLDj6VUqyebkJwznsKSNBznVDdyLYtVnKwYQ0qRxnMuIPRxCfS_S1BCXv1Zwzng99SLoToZktmSvgtLLDNL_wf-AvAnv5M</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Kajimoto, Masaki</creator><creator>Ledee, Dolena R</creator><creator>Olson, Aaron K</creator><creator>Isern, Nancy G</creator><creator>Robillard-Frayne, Isabelle</creator><creator>Des Rosiers, Christine</creator><creator>Portman, Michael A</creator><general>SAGE Publications</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20161101</creationdate><title>Selective cerebral perfusion prevents abnormalities in glutamate cycling and neuronal apoptosis in a model of infant deep hypothermic circulatory arrest and reperfusion</title><author>Kajimoto, Masaki ; Ledee, Dolena R ; Olson, Aaron K ; Isern, Nancy G ; Robillard-Frayne, Isabelle ; Des Rosiers, Christine ; Portman, Michael A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-c35ed18428a0c0ccc82896e481c46f10e01c31c268a1bc0e68ee870da4311213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Cardiopulmonary Bypass</topic><topic>Cerebral Cortex - blood supply</topic><topic>Cerebral Cortex - metabolism</topic><topic>Cerebral Cortex - pathology</topic><topic>Cerebral Cortex - physiopathology</topic><topic>Cerebrovascular Circulation - physiology</topic><topic>Environmental Molecular Sciences Laboratory</topic><topic>Glucose - metabolism</topic><topic>Glutamic Acid - metabolism</topic><topic>Hypothermia, Induced</topic><topic>Male</topic><topic>Neurons - metabolism</topic><topic>Neurons - pathology</topic><topic>Original</topic><topic>Perfusion</topic><topic>Reperfusion</topic><topic>Swine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kajimoto, Masaki</creatorcontrib><creatorcontrib>Ledee, Dolena R</creatorcontrib><creatorcontrib>Olson, Aaron K</creatorcontrib><creatorcontrib>Isern, Nancy G</creatorcontrib><creatorcontrib>Robillard-Frayne, Isabelle</creatorcontrib><creatorcontrib>Des Rosiers, Christine</creatorcontrib><creatorcontrib>Portman, Michael A</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cerebral blood flow and metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kajimoto, Masaki</au><au>Ledee, Dolena R</au><au>Olson, Aaron K</au><au>Isern, Nancy G</au><au>Robillard-Frayne, Isabelle</au><au>Des Rosiers, Christine</au><au>Portman, Michael A</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective cerebral perfusion prevents abnormalities in glutamate cycling and neuronal apoptosis in a model of infant deep hypothermic circulatory arrest and reperfusion</atitle><jtitle>Journal of cerebral blood flow and metabolism</jtitle><addtitle>J Cereb Blood Flow Metab</addtitle><date>2016-11-01</date><risdate>2016</risdate><volume>36</volume><issue>11</issue><spage>1992</spage><epage>2004</epage><pages>1992-2004</pages><issn>0271-678X</issn><eissn>1559-7016</eissn><abstract>Deep hypothermic circulatory arrest is often required for the repair of complex congenital cardiac defects in infants. However, deep hypothermic circulatory arrest induces neuroapoptosis associated with later development of neurocognitive abnormalities. Selective cerebral perfusion theoretically provides superior neural protection possibly through modifications in cerebral substrate oxidation and closely integrated glutamate cycling. We tested the hypothesis that selective cerebral perfusion modulates glucose utilization, and ameliorates abnormalities in glutamate flux, which occur in association with neuroapoptosis during deep hypothermic circulatory arrest. Eighteen infant male Yorkshire piglets were assigned randomly to two groups of seven (deep hypothermic circulatory arrest or deep hypothermic circulatory arrest with selective cerebral perfusion for 60 minutes at 18℃) and four control pigs without cardiopulmonary bypass support. Carbon-13-labeled glucose as a metabolic tracer was infused, and gas chromatography–mass spectrometry and nuclear magnetic resonance were used for metabolic analysis in the frontal cortex. Following 2.5 h of cerebral reperfusion, we observed similar cerebral adenosine triphosphate levels, absolute levels of lactate and citric acid cycle intermediates, and carbon-13 enrichment among three groups. However, deep hypothermic circulatory arrest induced significant abnormalities in glutamate cycling resulting in reduced glutamate/glutamine and elevated γ-aminobutyric acid/glutamate along with neuroapoptosis, which were all prevented by selective cerebral perfusion. The data suggest that selective cerebral perfusion prevents these modifications in glutamate/glutamine/γ-aminobutyric acid cycling and protects the cerebral cortex from apoptosis.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>27604310</pmid><doi>10.1177/0271678X16666846</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0271-678X
ispartof Journal of cerebral blood flow and metabolism, 2016-11, Vol.36 (11), p.1992-2004
issn 0271-678X
1559-7016
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5094314
source MEDLINE; EZB-FREE-00999 freely available EZB journals; SAGE Complete; PubMed Central
subjects 60 APPLIED LIFE SCIENCES
Animals
Apoptosis
BASIC BIOLOGICAL SCIENCES
Cardiopulmonary Bypass
Cerebral Cortex - blood supply
Cerebral Cortex - metabolism
Cerebral Cortex - pathology
Cerebral Cortex - physiopathology
Cerebrovascular Circulation - physiology
Environmental Molecular Sciences Laboratory
Glucose - metabolism
Glutamic Acid - metabolism
Hypothermia, Induced
Male
Neurons - metabolism
Neurons - pathology
Original
Perfusion
Reperfusion
Swine
title Selective cerebral perfusion prevents abnormalities in glutamate cycling and neuronal apoptosis in a model of infant deep hypothermic circulatory arrest and reperfusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A27%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20cerebral%20perfusion%20prevents%20abnormalities%20in%20glutamate%20cycling%20and%20neuronal%20apoptosis%20in%20a%20model%20of%20infant%20deep%20hypothermic%20circulatory%20arrest%20and%20reperfusion&rft.jtitle=Journal%20of%20cerebral%20blood%20flow%20and%20metabolism&rft.au=Kajimoto,%20Masaki&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(US),%20Environmental%20Molecular%20Sciences%20Laboratory%20(EMSL)&rft.date=2016-11-01&rft.volume=36&rft.issue=11&rft.spage=1992&rft.epage=2004&rft.pages=1992-2004&rft.issn=0271-678X&rft.eissn=1559-7016&rft_id=info:doi/10.1177/0271678X16666846&rft_dat=%3Cproquest_pubme%3E1835523696%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835523696&rft_id=info:pmid/27604310&rft_sage_id=10.1177_0271678X16666846&rfr_iscdi=true