Residue-specific Incorporation of Noncanonical Amino Acids into Model Proteins Using an Escherichia coli Cell-free Transcription-translation System
The canonical set of amino acids leads to an exceptionally wide range of protein functionality. Nevertheless, the set of residues still imposes limitations on potential protein applications. The incorporation of noncanonical amino acids can enlarge this scope. There are two complementary approaches...
Gespeichert in:
Veröffentlicht in: | Journal of Visualized Experiments 2016-08 (114) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 114 |
container_start_page | |
container_title | Journal of Visualized Experiments |
container_volume | |
creator | Worst, Emanuel G. Exner, Matthias P. De Simone, Alessandro Schenkelberger, Marc Noireaux, Vincent Budisa, Nediljko Ott, Albrecht |
description | The canonical set of amino acids leads to an exceptionally wide range of protein functionality. Nevertheless, the set of residues still imposes limitations on potential protein applications. The incorporation of noncanonical amino acids can enlarge this scope. There are two complementary approaches for the incorporation of noncanonical amino acids. For site-specific incorporation, in addition to the endogenous canonical translational machineries, an orthogonal aminoacyl-tRNA-synthetase-tRNA pair must be provided that does not interact with the canonical ones. Consequently, a codon that is not assigned to a canonical amino acid, usually a stop codon, is also required. This genetic code expansion enables the incorporation of a noncanonical amino acid at a single, given site within the protein. The here presented work describes residue-specific incorporation where the genetic code is reassigned within the endogenous translational system. The translation machinery accepts the noncanonical amino acid as a surrogate to incorporate it at canonically prescribed locations, i.e., all occurrences of a canonical amino acid in the protein are replaced by the noncanonical one. The incorporation of noncanonical amino acids can change the protein structure, causing considerably modified physical and chemical properties. Noncanonical amino acid analogs often act as cell growth inhibitors for expression hosts since they modify endogenous proteins, limiting in vivo protein production. In vivo incorporation of toxic noncanonical amino acids into proteins remains particularly challenging. Here, a cell-free approach for a complete replacement of L-arginine by the noncanonical amino acid L-canavanine is presented. It circumvents the inherent difficulties of in vivo expression. Additionally, a protocol to prepare target proteins for mass spectral analysis is included. It is shown that L-lysine can be replaced by L-hydroxy-lysine, albeit with lower efficiency. In principle, any noncanonical amino acid analog can be incorporated using the presented method as long as the endogenous in vitro translation system recognizes it. |
doi_str_mv | 10.3791/54273 |
format | Article |
fullrecord | <record><control><sourceid>proquest_223</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5091720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1810556388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-c51d6faca5a8fd537067754932af5af74da27d2f96c2388440da0d1ed60179d43</originalsourceid><addsrcrecordid>eNpVkc9u1DAQxiMEoqX0BTggX5C4pNhOHCcXpNWqQKXyR9BK3Cxjj7uzSjzBTir1OXhhst2lKifbmp-_b2a-ojgV_KzSnXinaqmrJ8Wx6Gpe8lb_fProflS8yHnLeSO5ap8XR1IrzmvRHBd_vkNGP0OZR3AY0LGL6CiNlOyEFBkF9oWis5EiOtuz1YCR2MqhzwzjROwzeejZt0QTYMzsOmO8YTay8-w2kNBt0DJHPbI19H0ZEgC7SjZml3DcOZTT7tXv3X7c5QmGl8WzYPsMp4fzpLj-cH61_lRefv14sV5dlq5q5VQ6JXwTrLPKtsGrSvNGa1V3lbRB2aBrb6X2MnSNk1Xb1jX3lnsBvuFCd76uTor3e91x_jWAdxCXXnozJhxsujNk0fxfibgxN3RrFO-ElnwReHsQSPR7hjyZAbNb5rQRaM5GtIIr1SzmC_pmj7pEOScIDzaCm12A5j7AhXv9uKcH6l9iC_BqD2zpFsyW5hSXHR1-_wUiuaIh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1810556388</pqid></control><display><type>article</type><title>Residue-specific Incorporation of Noncanonical Amino Acids into Model Proteins Using an Escherichia coli Cell-free Transcription-translation System</title><source>Journal of Visualized Experiments : JoVE</source><creator>Worst, Emanuel G. ; Exner, Matthias P. ; De Simone, Alessandro ; Schenkelberger, Marc ; Noireaux, Vincent ; Budisa, Nediljko ; Ott, Albrecht</creator><creatorcontrib>Worst, Emanuel G. ; Exner, Matthias P. ; De Simone, Alessandro ; Schenkelberger, Marc ; Noireaux, Vincent ; Budisa, Nediljko ; Ott, Albrecht</creatorcontrib><description>The canonical set of amino acids leads to an exceptionally wide range of protein functionality. Nevertheless, the set of residues still imposes limitations on potential protein applications. The incorporation of noncanonical amino acids can enlarge this scope. There are two complementary approaches for the incorporation of noncanonical amino acids. For site-specific incorporation, in addition to the endogenous canonical translational machineries, an orthogonal aminoacyl-tRNA-synthetase-tRNA pair must be provided that does not interact with the canonical ones. Consequently, a codon that is not assigned to a canonical amino acid, usually a stop codon, is also required. This genetic code expansion enables the incorporation of a noncanonical amino acid at a single, given site within the protein. The here presented work describes residue-specific incorporation where the genetic code is reassigned within the endogenous translational system. The translation machinery accepts the noncanonical amino acid as a surrogate to incorporate it at canonically prescribed locations, i.e., all occurrences of a canonical amino acid in the protein are replaced by the noncanonical one. The incorporation of noncanonical amino acids can change the protein structure, causing considerably modified physical and chemical properties. Noncanonical amino acid analogs often act as cell growth inhibitors for expression hosts since they modify endogenous proteins, limiting in vivo protein production. In vivo incorporation of toxic noncanonical amino acids into proteins remains particularly challenging. Here, a cell-free approach for a complete replacement of L-arginine by the noncanonical amino acid L-canavanine is presented. It circumvents the inherent difficulties of in vivo expression. Additionally, a protocol to prepare target proteins for mass spectral analysis is included. It is shown that L-lysine can be replaced by L-hydroxy-lysine, albeit with lower efficiency. In principle, any noncanonical amino acid analog can be incorporated using the presented method as long as the endogenous in vitro translation system recognizes it.</description><identifier>ISSN: 1940-087X</identifier><identifier>EISSN: 1940-087X</identifier><identifier>DOI: 10.3791/54273</identifier><identifier>PMID: 27500416</identifier><language>eng</language><publisher>United States: MyJove Corporation</publisher><subject>Amino Acids - genetics ; Amino Acids - metabolism ; Amino Acyl-tRNA Synthetases - genetics ; Amino Acyl-tRNA Synthetases - metabolism ; Cell-Free System ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - metabolism ; Molecular Biology ; Protein Engineering - methods</subject><ispartof>Journal of Visualized Experiments, 2016-08 (114)</ispartof><rights>Copyright © 2016, Journal of Visualized Experiments</rights><rights>Copyright © 2016, Journal of Visualized Experiments 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-c51d6faca5a8fd537067754932af5af74da27d2f96c2388440da0d1ed60179d43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.jove.com/files/email_thumbs/54273.png</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5091720/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5091720/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3843,27924,27925,53791,53793</link.rule.ids><linktorsrc>$$Uhttp://dx.doi.org/10.3791/54273$$EView_record_in_Journal_of_Visualized_Experiments$$FView_record_in_$$GJournal_of_Visualized_Experiments</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27500416$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Worst, Emanuel G.</creatorcontrib><creatorcontrib>Exner, Matthias P.</creatorcontrib><creatorcontrib>De Simone, Alessandro</creatorcontrib><creatorcontrib>Schenkelberger, Marc</creatorcontrib><creatorcontrib>Noireaux, Vincent</creatorcontrib><creatorcontrib>Budisa, Nediljko</creatorcontrib><creatorcontrib>Ott, Albrecht</creatorcontrib><title>Residue-specific Incorporation of Noncanonical Amino Acids into Model Proteins Using an Escherichia coli Cell-free Transcription-translation System</title><title>Journal of Visualized Experiments</title><addtitle>J Vis Exp</addtitle><description>The canonical set of amino acids leads to an exceptionally wide range of protein functionality. Nevertheless, the set of residues still imposes limitations on potential protein applications. The incorporation of noncanonical amino acids can enlarge this scope. There are two complementary approaches for the incorporation of noncanonical amino acids. For site-specific incorporation, in addition to the endogenous canonical translational machineries, an orthogonal aminoacyl-tRNA-synthetase-tRNA pair must be provided that does not interact with the canonical ones. Consequently, a codon that is not assigned to a canonical amino acid, usually a stop codon, is also required. This genetic code expansion enables the incorporation of a noncanonical amino acid at a single, given site within the protein. The here presented work describes residue-specific incorporation where the genetic code is reassigned within the endogenous translational system. The translation machinery accepts the noncanonical amino acid as a surrogate to incorporate it at canonically prescribed locations, i.e., all occurrences of a canonical amino acid in the protein are replaced by the noncanonical one. The incorporation of noncanonical amino acids can change the protein structure, causing considerably modified physical and chemical properties. Noncanonical amino acid analogs often act as cell growth inhibitors for expression hosts since they modify endogenous proteins, limiting in vivo protein production. In vivo incorporation of toxic noncanonical amino acids into proteins remains particularly challenging. Here, a cell-free approach for a complete replacement of L-arginine by the noncanonical amino acid L-canavanine is presented. It circumvents the inherent difficulties of in vivo expression. Additionally, a protocol to prepare target proteins for mass spectral analysis is included. It is shown that L-lysine can be replaced by L-hydroxy-lysine, albeit with lower efficiency. In principle, any noncanonical amino acid analog can be incorporated using the presented method as long as the endogenous in vitro translation system recognizes it.</description><subject>Amino Acids - genetics</subject><subject>Amino Acids - metabolism</subject><subject>Amino Acyl-tRNA Synthetases - genetics</subject><subject>Amino Acyl-tRNA Synthetases - metabolism</subject><subject>Cell-Free System</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Molecular Biology</subject><subject>Protein Engineering - methods</subject><issn>1940-087X</issn><issn>1940-087X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc9u1DAQxiMEoqX0BTggX5C4pNhOHCcXpNWqQKXyR9BK3Cxjj7uzSjzBTir1OXhhst2lKifbmp-_b2a-ojgV_KzSnXinaqmrJ8Wx6Gpe8lb_fProflS8yHnLeSO5ap8XR1IrzmvRHBd_vkNGP0OZR3AY0LGL6CiNlOyEFBkF9oWis5EiOtuz1YCR2MqhzwzjROwzeejZt0QTYMzsOmO8YTay8-w2kNBt0DJHPbI19H0ZEgC7SjZml3DcOZTT7tXv3X7c5QmGl8WzYPsMp4fzpLj-cH61_lRefv14sV5dlq5q5VQ6JXwTrLPKtsGrSvNGa1V3lbRB2aBrb6X2MnSNk1Xb1jX3lnsBvuFCd76uTor3e91x_jWAdxCXXnozJhxsujNk0fxfibgxN3RrFO-ElnwReHsQSPR7hjyZAbNb5rQRaM5GtIIr1SzmC_pmj7pEOScIDzaCm12A5j7AhXv9uKcH6l9iC_BqD2zpFsyW5hSXHR1-_wUiuaIh</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Worst, Emanuel G.</creator><creator>Exner, Matthias P.</creator><creator>De Simone, Alessandro</creator><creator>Schenkelberger, Marc</creator><creator>Noireaux, Vincent</creator><creator>Budisa, Nediljko</creator><creator>Ott, Albrecht</creator><general>MyJove Corporation</general><scope>ALOKQ</scope><scope>DRUMS</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160801</creationdate><title>Residue-specific Incorporation of Noncanonical Amino Acids into Model Proteins Using an Escherichia coli Cell-free Transcription-translation System</title><author>Worst, Emanuel G. ; Exner, Matthias P. ; De Simone, Alessandro ; Schenkelberger, Marc ; Noireaux, Vincent ; Budisa, Nediljko ; Ott, Albrecht</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-c51d6faca5a8fd537067754932af5af74da27d2f96c2388440da0d1ed60179d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino Acids - genetics</topic><topic>Amino Acids - metabolism</topic><topic>Amino Acyl-tRNA Synthetases - genetics</topic><topic>Amino Acyl-tRNA Synthetases - metabolism</topic><topic>Cell-Free System</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Molecular Biology</topic><topic>Protein Engineering - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Worst, Emanuel G.</creatorcontrib><creatorcontrib>Exner, Matthias P.</creatorcontrib><creatorcontrib>De Simone, Alessandro</creatorcontrib><creatorcontrib>Schenkelberger, Marc</creatorcontrib><creatorcontrib>Noireaux, Vincent</creatorcontrib><creatorcontrib>Budisa, Nediljko</creatorcontrib><creatorcontrib>Ott, Albrecht</creatorcontrib><collection>JoVE Journal: Biology</collection><collection>JoVE Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of Visualized Experiments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Worst, Emanuel G.</au><au>Exner, Matthias P.</au><au>De Simone, Alessandro</au><au>Schenkelberger, Marc</au><au>Noireaux, Vincent</au><au>Budisa, Nediljko</au><au>Ott, Albrecht</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Residue-specific Incorporation of Noncanonical Amino Acids into Model Proteins Using an Escherichia coli Cell-free Transcription-translation System</atitle><jtitle>Journal of Visualized Experiments</jtitle><addtitle>J Vis Exp</addtitle><date>2016-08-01</date><risdate>2016</risdate><issue>114</issue><issn>1940-087X</issn><eissn>1940-087X</eissn><abstract>The canonical set of amino acids leads to an exceptionally wide range of protein functionality. Nevertheless, the set of residues still imposes limitations on potential protein applications. The incorporation of noncanonical amino acids can enlarge this scope. There are two complementary approaches for the incorporation of noncanonical amino acids. For site-specific incorporation, in addition to the endogenous canonical translational machineries, an orthogonal aminoacyl-tRNA-synthetase-tRNA pair must be provided that does not interact with the canonical ones. Consequently, a codon that is not assigned to a canonical amino acid, usually a stop codon, is also required. This genetic code expansion enables the incorporation of a noncanonical amino acid at a single, given site within the protein. The here presented work describes residue-specific incorporation where the genetic code is reassigned within the endogenous translational system. The translation machinery accepts the noncanonical amino acid as a surrogate to incorporate it at canonically prescribed locations, i.e., all occurrences of a canonical amino acid in the protein are replaced by the noncanonical one. The incorporation of noncanonical amino acids can change the protein structure, causing considerably modified physical and chemical properties. Noncanonical amino acid analogs often act as cell growth inhibitors for expression hosts since they modify endogenous proteins, limiting in vivo protein production. In vivo incorporation of toxic noncanonical amino acids into proteins remains particularly challenging. Here, a cell-free approach for a complete replacement of L-arginine by the noncanonical amino acid L-canavanine is presented. It circumvents the inherent difficulties of in vivo expression. Additionally, a protocol to prepare target proteins for mass spectral analysis is included. It is shown that L-lysine can be replaced by L-hydroxy-lysine, albeit with lower efficiency. In principle, any noncanonical amino acid analog can be incorporated using the presented method as long as the endogenous in vitro translation system recognizes it.</abstract><cop>United States</cop><pub>MyJove Corporation</pub><pmid>27500416</pmid><doi>10.3791/54273</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1940-087X |
ispartof | Journal of Visualized Experiments, 2016-08 (114) |
issn | 1940-087X 1940-087X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5091720 |
source | Journal of Visualized Experiments : JoVE |
subjects | Amino Acids - genetics Amino Acids - metabolism Amino Acyl-tRNA Synthetases - genetics Amino Acyl-tRNA Synthetases - metabolism Cell-Free System Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins - metabolism Molecular Biology Protein Engineering - methods |
title | Residue-specific Incorporation of Noncanonical Amino Acids into Model Proteins Using an Escherichia coli Cell-free Transcription-translation System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A00%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_223&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Residue-specific%20Incorporation%20of%20Noncanonical%20Amino%20Acids%20into%20Model%20Proteins%20Using%20an%20Escherichia%20coli%20Cell-free%20Transcription-translation%20System&rft.jtitle=Journal%20of%20Visualized%20Experiments&rft.au=Worst,%20Emanuel%20G.&rft.date=2016-08-01&rft.issue=114&rft.issn=1940-087X&rft.eissn=1940-087X&rft_id=info:doi/10.3791/54273&rft_dat=%3Cproquest_223%3E1810556388%3C/proquest_223%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1810556388&rft_id=info:pmid/27500416&rfr_iscdi=true |