Dose-rate-dependent damage of cerium dioxide in the scanning transmission electron microscope

Beam damage caused by energetic electrons in the transmission electron microscope is a fundamental constraint limiting the collection of artifact-free information. Through understanding the influence of the electron beam, experimental routines may be adjusted to improve the data collection process....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultramicroscopy 2016-11, Vol.170, p.1-9
Hauptverfasser: Johnston-Peck, Aaron C., DuChene, Joseph S., Roberts, Alan D., Wei, Wei David, Herzing, Andrew A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue
container_start_page 1
container_title Ultramicroscopy
container_volume 170
creator Johnston-Peck, Aaron C.
DuChene, Joseph S.
Roberts, Alan D.
Wei, Wei David
Herzing, Andrew A.
description Beam damage caused by energetic electrons in the transmission electron microscope is a fundamental constraint limiting the collection of artifact-free information. Through understanding the influence of the electron beam, experimental routines may be adjusted to improve the data collection process. Investigations of CeO2 indicate that there is not a critical dose required for the accumulation of electron beam damage. Instead, measurements using annular dark field scanning transmission electron microscopy and electron energy loss spectroscopy demonstrate that the onset of measurable damage occurs when a critical dose rate is exceeded. The mechanism behind this phenomenon is that oxygen vacancies created by exposure to a 300keV electron beam are actively annihilated as the sample re-oxidizes in the microscope environment. As a result, only when the rate of vacancy creation exceeds the recovery rate will beam damage begin to accumulate. This observation suggests that dose-intensive experiments can be accomplished without disrupting the native structure of the sample when executed using dose rates below the appropriate threshold. Furthermore, the presence of an encapsulating carbonaceous layer inhibits processes that cause beam damage, markedly increasing the dose rate threshold for the accumulation of damage. •Electron beam interactions introduce oxygen vacancies in CeO2 nanoparticles.•ADF-STEM and EELS can track the reduction of CeO2.•The reduced nanoparticles will oxidize in the microscope environment.•There is no critical dose for the accumulation of detectable damage.•The accumulation of detectable damage is dose rate dependent.
doi_str_mv 10.1016/j.ultramic.2016.07.002
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5091080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304399116300936</els_id><sourcerecordid>1855367795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-e6898dc87c56bb238052d45edbedaf8d0109f980d1bc196497584b96e6e102563</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxS0EokvhK1Q5ckkYO_G_CwKVFpAqcYEjshx7dutVYi92UsG3x6ttKzjBybb85s2b-RFyQaGjQMWbfbdOS7ZzcB2r7w5kB8CekA1VUrdMsv4p2UAPQ9trTc_Ii1L2AEBhUM_JGZOD0EzwDfn-IRVss12w9XjA6DEujbez3WGTto3DHNa58SH9DB6bEJvlFpvibIwh7pqaIJY5lBJSbHBCt-R6qaFyKi4d8CV5trVTwVf35zn5dn319fJTe_Pl4-fL9zet4zAsLQqllXdKOi7GkfUKOPMDRz-it1vla2y91Qo8HR3VYtCSq2HUAgVSYFz05-TtyfewjjN6V4fIdjKHHGabf5lkg_n7J4Zbs0t3hoOmoKAavL43yOnHimUxdSqH02QjprUYqjjvhZSa_4eUCdkrPRxdxUl63EfJuH1MRMEcMZq9ecBojhgNSFMx1sKLP-d5LHvgVgXvTgKsW70LmE1xAaNDH3KlYHwK_-rxG0vZtBc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826738940</pqid></control><display><type>article</type><title>Dose-rate-dependent damage of cerium dioxide in the scanning transmission electron microscope</title><source>Access via ScienceDirect (Elsevier)</source><creator>Johnston-Peck, Aaron C. ; DuChene, Joseph S. ; Roberts, Alan D. ; Wei, Wei David ; Herzing, Andrew A.</creator><creatorcontrib>Johnston-Peck, Aaron C. ; DuChene, Joseph S. ; Roberts, Alan D. ; Wei, Wei David ; Herzing, Andrew A.</creatorcontrib><description>Beam damage caused by energetic electrons in the transmission electron microscope is a fundamental constraint limiting the collection of artifact-free information. Through understanding the influence of the electron beam, experimental routines may be adjusted to improve the data collection process. Investigations of CeO2 indicate that there is not a critical dose required for the accumulation of electron beam damage. Instead, measurements using annular dark field scanning transmission electron microscopy and electron energy loss spectroscopy demonstrate that the onset of measurable damage occurs when a critical dose rate is exceeded. The mechanism behind this phenomenon is that oxygen vacancies created by exposure to a 300keV electron beam are actively annihilated as the sample re-oxidizes in the microscope environment. As a result, only when the rate of vacancy creation exceeds the recovery rate will beam damage begin to accumulate. This observation suggests that dose-intensive experiments can be accomplished without disrupting the native structure of the sample when executed using dose rates below the appropriate threshold. Furthermore, the presence of an encapsulating carbonaceous layer inhibits processes that cause beam damage, markedly increasing the dose rate threshold for the accumulation of damage. •Electron beam interactions introduce oxygen vacancies in CeO2 nanoparticles.•ADF-STEM and EELS can track the reduction of CeO2.•The reduced nanoparticles will oxidize in the microscope environment.•There is no critical dose for the accumulation of detectable damage.•The accumulation of detectable damage is dose rate dependent.</description><identifier>ISSN: 0304-3991</identifier><identifier>EISSN: 1879-2723</identifier><identifier>DOI: 10.1016/j.ultramic.2016.07.002</identifier><identifier>PMID: 27469265</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Beam damage ; Cerium dioxide ; Damage ; Damage accumulation ; Dosage ; Electron beams ; Point defects ; Scanning electron microscopy ; Scanning transmission electron microscopy ; Thresholds ; Vacancies</subject><ispartof>Ultramicroscopy, 2016-11, Vol.170, p.1-9</ispartof><rights>2016</rights><rights>Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-e6898dc87c56bb238052d45edbedaf8d0109f980d1bc196497584b96e6e102563</citedby><cites>FETCH-LOGICAL-c504t-e6898dc87c56bb238052d45edbedaf8d0109f980d1bc196497584b96e6e102563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ultramic.2016.07.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27928,27929,45999</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27469265$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnston-Peck, Aaron C.</creatorcontrib><creatorcontrib>DuChene, Joseph S.</creatorcontrib><creatorcontrib>Roberts, Alan D.</creatorcontrib><creatorcontrib>Wei, Wei David</creatorcontrib><creatorcontrib>Herzing, Andrew A.</creatorcontrib><title>Dose-rate-dependent damage of cerium dioxide in the scanning transmission electron microscope</title><title>Ultramicroscopy</title><addtitle>Ultramicroscopy</addtitle><description>Beam damage caused by energetic electrons in the transmission electron microscope is a fundamental constraint limiting the collection of artifact-free information. Through understanding the influence of the electron beam, experimental routines may be adjusted to improve the data collection process. Investigations of CeO2 indicate that there is not a critical dose required for the accumulation of electron beam damage. Instead, measurements using annular dark field scanning transmission electron microscopy and electron energy loss spectroscopy demonstrate that the onset of measurable damage occurs when a critical dose rate is exceeded. The mechanism behind this phenomenon is that oxygen vacancies created by exposure to a 300keV electron beam are actively annihilated as the sample re-oxidizes in the microscope environment. As a result, only when the rate of vacancy creation exceeds the recovery rate will beam damage begin to accumulate. This observation suggests that dose-intensive experiments can be accomplished without disrupting the native structure of the sample when executed using dose rates below the appropriate threshold. Furthermore, the presence of an encapsulating carbonaceous layer inhibits processes that cause beam damage, markedly increasing the dose rate threshold for the accumulation of damage. •Electron beam interactions introduce oxygen vacancies in CeO2 nanoparticles.•ADF-STEM and EELS can track the reduction of CeO2.•The reduced nanoparticles will oxidize in the microscope environment.•There is no critical dose for the accumulation of detectable damage.•The accumulation of detectable damage is dose rate dependent.</description><subject>Beam damage</subject><subject>Cerium dioxide</subject><subject>Damage</subject><subject>Damage accumulation</subject><subject>Dosage</subject><subject>Electron beams</subject><subject>Point defects</subject><subject>Scanning electron microscopy</subject><subject>Scanning transmission electron microscopy</subject><subject>Thresholds</subject><subject>Vacancies</subject><issn>0304-3991</issn><issn>1879-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkU9v1DAQxS0EokvhK1Q5ckkYO_G_CwKVFpAqcYEjshx7dutVYi92UsG3x6ttKzjBybb85s2b-RFyQaGjQMWbfbdOS7ZzcB2r7w5kB8CekA1VUrdMsv4p2UAPQ9trTc_Ii1L2AEBhUM_JGZOD0EzwDfn-IRVss12w9XjA6DEujbez3WGTto3DHNa58SH9DB6bEJvlFpvibIwh7pqaIJY5lBJSbHBCt-R6qaFyKi4d8CV5trVTwVf35zn5dn319fJTe_Pl4-fL9zet4zAsLQqllXdKOi7GkfUKOPMDRz-it1vla2y91Qo8HR3VYtCSq2HUAgVSYFz05-TtyfewjjN6V4fIdjKHHGabf5lkg_n7J4Zbs0t3hoOmoKAavL43yOnHimUxdSqH02QjprUYqjjvhZSa_4eUCdkrPRxdxUl63EfJuH1MRMEcMZq9ecBojhgNSFMx1sKLP-d5LHvgVgXvTgKsW70LmE1xAaNDH3KlYHwK_-rxG0vZtBc</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Johnston-Peck, Aaron C.</creator><creator>DuChene, Joseph S.</creator><creator>Roberts, Alan D.</creator><creator>Wei, Wei David</creator><creator>Herzing, Andrew A.</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20161101</creationdate><title>Dose-rate-dependent damage of cerium dioxide in the scanning transmission electron microscope</title><author>Johnston-Peck, Aaron C. ; DuChene, Joseph S. ; Roberts, Alan D. ; Wei, Wei David ; Herzing, Andrew A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-e6898dc87c56bb238052d45edbedaf8d0109f980d1bc196497584b96e6e102563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Beam damage</topic><topic>Cerium dioxide</topic><topic>Damage</topic><topic>Damage accumulation</topic><topic>Dosage</topic><topic>Electron beams</topic><topic>Point defects</topic><topic>Scanning electron microscopy</topic><topic>Scanning transmission electron microscopy</topic><topic>Thresholds</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnston-Peck, Aaron C.</creatorcontrib><creatorcontrib>DuChene, Joseph S.</creatorcontrib><creatorcontrib>Roberts, Alan D.</creatorcontrib><creatorcontrib>Wei, Wei David</creatorcontrib><creatorcontrib>Herzing, Andrew A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Ultramicroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnston-Peck, Aaron C.</au><au>DuChene, Joseph S.</au><au>Roberts, Alan D.</au><au>Wei, Wei David</au><au>Herzing, Andrew A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dose-rate-dependent damage of cerium dioxide in the scanning transmission electron microscope</atitle><jtitle>Ultramicroscopy</jtitle><addtitle>Ultramicroscopy</addtitle><date>2016-11-01</date><risdate>2016</risdate><volume>170</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0304-3991</issn><eissn>1879-2723</eissn><abstract>Beam damage caused by energetic electrons in the transmission electron microscope is a fundamental constraint limiting the collection of artifact-free information. Through understanding the influence of the electron beam, experimental routines may be adjusted to improve the data collection process. Investigations of CeO2 indicate that there is not a critical dose required for the accumulation of electron beam damage. Instead, measurements using annular dark field scanning transmission electron microscopy and electron energy loss spectroscopy demonstrate that the onset of measurable damage occurs when a critical dose rate is exceeded. The mechanism behind this phenomenon is that oxygen vacancies created by exposure to a 300keV electron beam are actively annihilated as the sample re-oxidizes in the microscope environment. As a result, only when the rate of vacancy creation exceeds the recovery rate will beam damage begin to accumulate. This observation suggests that dose-intensive experiments can be accomplished without disrupting the native structure of the sample when executed using dose rates below the appropriate threshold. Furthermore, the presence of an encapsulating carbonaceous layer inhibits processes that cause beam damage, markedly increasing the dose rate threshold for the accumulation of damage. •Electron beam interactions introduce oxygen vacancies in CeO2 nanoparticles.•ADF-STEM and EELS can track the reduction of CeO2.•The reduced nanoparticles will oxidize in the microscope environment.•There is no critical dose for the accumulation of detectable damage.•The accumulation of detectable damage is dose rate dependent.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>27469265</pmid><doi>10.1016/j.ultramic.2016.07.002</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3991
ispartof Ultramicroscopy, 2016-11, Vol.170, p.1-9
issn 0304-3991
1879-2723
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5091080
source Access via ScienceDirect (Elsevier)
subjects Beam damage
Cerium dioxide
Damage
Damage accumulation
Dosage
Electron beams
Point defects
Scanning electron microscopy
Scanning transmission electron microscopy
Thresholds
Vacancies
title Dose-rate-dependent damage of cerium dioxide in the scanning transmission electron microscope
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T19%3A15%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dose-rate-dependent%20damage%20of%20cerium%20dioxide%20in%20the%20scanning%20transmission%20electron%20microscope&rft.jtitle=Ultramicroscopy&rft.au=Johnston-Peck,%20Aaron%20C.&rft.date=2016-11-01&rft.volume=170&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0304-3991&rft.eissn=1879-2723&rft_id=info:doi/10.1016/j.ultramic.2016.07.002&rft_dat=%3Cproquest_pubme%3E1855367795%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826738940&rft_id=info:pmid/27469265&rft_els_id=S0304399116300936&rfr_iscdi=true