Dose-rate-dependent damage of cerium dioxide in the scanning transmission electron microscope
Beam damage caused by energetic electrons in the transmission electron microscope is a fundamental constraint limiting the collection of artifact-free information. Through understanding the influence of the electron beam, experimental routines may be adjusted to improve the data collection process....
Gespeichert in:
Veröffentlicht in: | Ultramicroscopy 2016-11, Vol.170, p.1-9 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Ultramicroscopy |
container_volume | 170 |
creator | Johnston-Peck, Aaron C. DuChene, Joseph S. Roberts, Alan D. Wei, Wei David Herzing, Andrew A. |
description | Beam damage caused by energetic electrons in the transmission electron microscope is a fundamental constraint limiting the collection of artifact-free information. Through understanding the influence of the electron beam, experimental routines may be adjusted to improve the data collection process. Investigations of CeO2 indicate that there is not a critical dose required for the accumulation of electron beam damage. Instead, measurements using annular dark field scanning transmission electron microscopy and electron energy loss spectroscopy demonstrate that the onset of measurable damage occurs when a critical dose rate is exceeded. The mechanism behind this phenomenon is that oxygen vacancies created by exposure to a 300keV electron beam are actively annihilated as the sample re-oxidizes in the microscope environment. As a result, only when the rate of vacancy creation exceeds the recovery rate will beam damage begin to accumulate. This observation suggests that dose-intensive experiments can be accomplished without disrupting the native structure of the sample when executed using dose rates below the appropriate threshold. Furthermore, the presence of an encapsulating carbonaceous layer inhibits processes that cause beam damage, markedly increasing the dose rate threshold for the accumulation of damage.
•Electron beam interactions introduce oxygen vacancies in CeO2 nanoparticles.•ADF-STEM and EELS can track the reduction of CeO2.•The reduced nanoparticles will oxidize in the microscope environment.•There is no critical dose for the accumulation of detectable damage.•The accumulation of detectable damage is dose rate dependent. |
doi_str_mv | 10.1016/j.ultramic.2016.07.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5091080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304399116300936</els_id><sourcerecordid>1855367795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-e6898dc87c56bb238052d45edbedaf8d0109f980d1bc196497584b96e6e102563</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxS0EokvhK1Q5ckkYO_G_CwKVFpAqcYEjshx7dutVYi92UsG3x6ttKzjBybb85s2b-RFyQaGjQMWbfbdOS7ZzcB2r7w5kB8CekA1VUrdMsv4p2UAPQ9trTc_Ii1L2AEBhUM_JGZOD0EzwDfn-IRVss12w9XjA6DEujbez3WGTto3DHNa58SH9DB6bEJvlFpvibIwh7pqaIJY5lBJSbHBCt-R6qaFyKi4d8CV5trVTwVf35zn5dn319fJTe_Pl4-fL9zet4zAsLQqllXdKOi7GkfUKOPMDRz-it1vla2y91Qo8HR3VYtCSq2HUAgVSYFz05-TtyfewjjN6V4fIdjKHHGabf5lkg_n7J4Zbs0t3hoOmoKAavL43yOnHimUxdSqH02QjprUYqjjvhZSa_4eUCdkrPRxdxUl63EfJuH1MRMEcMZq9ecBojhgNSFMx1sKLP-d5LHvgVgXvTgKsW70LmE1xAaNDH3KlYHwK_-rxG0vZtBc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826738940</pqid></control><display><type>article</type><title>Dose-rate-dependent damage of cerium dioxide in the scanning transmission electron microscope</title><source>Access via ScienceDirect (Elsevier)</source><creator>Johnston-Peck, Aaron C. ; DuChene, Joseph S. ; Roberts, Alan D. ; Wei, Wei David ; Herzing, Andrew A.</creator><creatorcontrib>Johnston-Peck, Aaron C. ; DuChene, Joseph S. ; Roberts, Alan D. ; Wei, Wei David ; Herzing, Andrew A.</creatorcontrib><description>Beam damage caused by energetic electrons in the transmission electron microscope is a fundamental constraint limiting the collection of artifact-free information. Through understanding the influence of the electron beam, experimental routines may be adjusted to improve the data collection process. Investigations of CeO2 indicate that there is not a critical dose required for the accumulation of electron beam damage. Instead, measurements using annular dark field scanning transmission electron microscopy and electron energy loss spectroscopy demonstrate that the onset of measurable damage occurs when a critical dose rate is exceeded. The mechanism behind this phenomenon is that oxygen vacancies created by exposure to a 300keV electron beam are actively annihilated as the sample re-oxidizes in the microscope environment. As a result, only when the rate of vacancy creation exceeds the recovery rate will beam damage begin to accumulate. This observation suggests that dose-intensive experiments can be accomplished without disrupting the native structure of the sample when executed using dose rates below the appropriate threshold. Furthermore, the presence of an encapsulating carbonaceous layer inhibits processes that cause beam damage, markedly increasing the dose rate threshold for the accumulation of damage.
•Electron beam interactions introduce oxygen vacancies in CeO2 nanoparticles.•ADF-STEM and EELS can track the reduction of CeO2.•The reduced nanoparticles will oxidize in the microscope environment.•There is no critical dose for the accumulation of detectable damage.•The accumulation of detectable damage is dose rate dependent.</description><identifier>ISSN: 0304-3991</identifier><identifier>EISSN: 1879-2723</identifier><identifier>DOI: 10.1016/j.ultramic.2016.07.002</identifier><identifier>PMID: 27469265</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Beam damage ; Cerium dioxide ; Damage ; Damage accumulation ; Dosage ; Electron beams ; Point defects ; Scanning electron microscopy ; Scanning transmission electron microscopy ; Thresholds ; Vacancies</subject><ispartof>Ultramicroscopy, 2016-11, Vol.170, p.1-9</ispartof><rights>2016</rights><rights>Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-e6898dc87c56bb238052d45edbedaf8d0109f980d1bc196497584b96e6e102563</citedby><cites>FETCH-LOGICAL-c504t-e6898dc87c56bb238052d45edbedaf8d0109f980d1bc196497584b96e6e102563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ultramic.2016.07.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27928,27929,45999</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27469265$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnston-Peck, Aaron C.</creatorcontrib><creatorcontrib>DuChene, Joseph S.</creatorcontrib><creatorcontrib>Roberts, Alan D.</creatorcontrib><creatorcontrib>Wei, Wei David</creatorcontrib><creatorcontrib>Herzing, Andrew A.</creatorcontrib><title>Dose-rate-dependent damage of cerium dioxide in the scanning transmission electron microscope</title><title>Ultramicroscopy</title><addtitle>Ultramicroscopy</addtitle><description>Beam damage caused by energetic electrons in the transmission electron microscope is a fundamental constraint limiting the collection of artifact-free information. Through understanding the influence of the electron beam, experimental routines may be adjusted to improve the data collection process. Investigations of CeO2 indicate that there is not a critical dose required for the accumulation of electron beam damage. Instead, measurements using annular dark field scanning transmission electron microscopy and electron energy loss spectroscopy demonstrate that the onset of measurable damage occurs when a critical dose rate is exceeded. The mechanism behind this phenomenon is that oxygen vacancies created by exposure to a 300keV electron beam are actively annihilated as the sample re-oxidizes in the microscope environment. As a result, only when the rate of vacancy creation exceeds the recovery rate will beam damage begin to accumulate. This observation suggests that dose-intensive experiments can be accomplished without disrupting the native structure of the sample when executed using dose rates below the appropriate threshold. Furthermore, the presence of an encapsulating carbonaceous layer inhibits processes that cause beam damage, markedly increasing the dose rate threshold for the accumulation of damage.
•Electron beam interactions introduce oxygen vacancies in CeO2 nanoparticles.•ADF-STEM and EELS can track the reduction of CeO2.•The reduced nanoparticles will oxidize in the microscope environment.•There is no critical dose for the accumulation of detectable damage.•The accumulation of detectable damage is dose rate dependent.</description><subject>Beam damage</subject><subject>Cerium dioxide</subject><subject>Damage</subject><subject>Damage accumulation</subject><subject>Dosage</subject><subject>Electron beams</subject><subject>Point defects</subject><subject>Scanning electron microscopy</subject><subject>Scanning transmission electron microscopy</subject><subject>Thresholds</subject><subject>Vacancies</subject><issn>0304-3991</issn><issn>1879-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkU9v1DAQxS0EokvhK1Q5ckkYO_G_CwKVFpAqcYEjshx7dutVYi92UsG3x6ttKzjBybb85s2b-RFyQaGjQMWbfbdOS7ZzcB2r7w5kB8CekA1VUrdMsv4p2UAPQ9trTc_Ii1L2AEBhUM_JGZOD0EzwDfn-IRVss12w9XjA6DEujbez3WGTto3DHNa58SH9DB6bEJvlFpvibIwh7pqaIJY5lBJSbHBCt-R6qaFyKi4d8CV5trVTwVf35zn5dn319fJTe_Pl4-fL9zet4zAsLQqllXdKOi7GkfUKOPMDRz-it1vla2y91Qo8HR3VYtCSq2HUAgVSYFz05-TtyfewjjN6V4fIdjKHHGabf5lkg_n7J4Zbs0t3hoOmoKAavL43yOnHimUxdSqH02QjprUYqjjvhZSa_4eUCdkrPRxdxUl63EfJuH1MRMEcMZq9ecBojhgNSFMx1sKLP-d5LHvgVgXvTgKsW70LmE1xAaNDH3KlYHwK_-rxG0vZtBc</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Johnston-Peck, Aaron C.</creator><creator>DuChene, Joseph S.</creator><creator>Roberts, Alan D.</creator><creator>Wei, Wei David</creator><creator>Herzing, Andrew A.</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20161101</creationdate><title>Dose-rate-dependent damage of cerium dioxide in the scanning transmission electron microscope</title><author>Johnston-Peck, Aaron C. ; DuChene, Joseph S. ; Roberts, Alan D. ; Wei, Wei David ; Herzing, Andrew A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-e6898dc87c56bb238052d45edbedaf8d0109f980d1bc196497584b96e6e102563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Beam damage</topic><topic>Cerium dioxide</topic><topic>Damage</topic><topic>Damage accumulation</topic><topic>Dosage</topic><topic>Electron beams</topic><topic>Point defects</topic><topic>Scanning electron microscopy</topic><topic>Scanning transmission electron microscopy</topic><topic>Thresholds</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnston-Peck, Aaron C.</creatorcontrib><creatorcontrib>DuChene, Joseph S.</creatorcontrib><creatorcontrib>Roberts, Alan D.</creatorcontrib><creatorcontrib>Wei, Wei David</creatorcontrib><creatorcontrib>Herzing, Andrew A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Ultramicroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnston-Peck, Aaron C.</au><au>DuChene, Joseph S.</au><au>Roberts, Alan D.</au><au>Wei, Wei David</au><au>Herzing, Andrew A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dose-rate-dependent damage of cerium dioxide in the scanning transmission electron microscope</atitle><jtitle>Ultramicroscopy</jtitle><addtitle>Ultramicroscopy</addtitle><date>2016-11-01</date><risdate>2016</risdate><volume>170</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0304-3991</issn><eissn>1879-2723</eissn><abstract>Beam damage caused by energetic electrons in the transmission electron microscope is a fundamental constraint limiting the collection of artifact-free information. Through understanding the influence of the electron beam, experimental routines may be adjusted to improve the data collection process. Investigations of CeO2 indicate that there is not a critical dose required for the accumulation of electron beam damage. Instead, measurements using annular dark field scanning transmission electron microscopy and electron energy loss spectroscopy demonstrate that the onset of measurable damage occurs when a critical dose rate is exceeded. The mechanism behind this phenomenon is that oxygen vacancies created by exposure to a 300keV electron beam are actively annihilated as the sample re-oxidizes in the microscope environment. As a result, only when the rate of vacancy creation exceeds the recovery rate will beam damage begin to accumulate. This observation suggests that dose-intensive experiments can be accomplished without disrupting the native structure of the sample when executed using dose rates below the appropriate threshold. Furthermore, the presence of an encapsulating carbonaceous layer inhibits processes that cause beam damage, markedly increasing the dose rate threshold for the accumulation of damage.
•Electron beam interactions introduce oxygen vacancies in CeO2 nanoparticles.•ADF-STEM and EELS can track the reduction of CeO2.•The reduced nanoparticles will oxidize in the microscope environment.•There is no critical dose for the accumulation of detectable damage.•The accumulation of detectable damage is dose rate dependent.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>27469265</pmid><doi>10.1016/j.ultramic.2016.07.002</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3991 |
ispartof | Ultramicroscopy, 2016-11, Vol.170, p.1-9 |
issn | 0304-3991 1879-2723 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5091080 |
source | Access via ScienceDirect (Elsevier) |
subjects | Beam damage Cerium dioxide Damage Damage accumulation Dosage Electron beams Point defects Scanning electron microscopy Scanning transmission electron microscopy Thresholds Vacancies |
title | Dose-rate-dependent damage of cerium dioxide in the scanning transmission electron microscope |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T19%3A15%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dose-rate-dependent%20damage%20of%20cerium%20dioxide%20in%20the%20scanning%20transmission%20electron%20microscope&rft.jtitle=Ultramicroscopy&rft.au=Johnston-Peck,%20Aaron%20C.&rft.date=2016-11-01&rft.volume=170&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0304-3991&rft.eissn=1879-2723&rft_id=info:doi/10.1016/j.ultramic.2016.07.002&rft_dat=%3Cproquest_pubme%3E1855367795%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826738940&rft_id=info:pmid/27469265&rft_els_id=S0304399116300936&rfr_iscdi=true |