Cryo-EM Structure of Caspase-8 Tandem DED Filament Reveals Assembly and Regulation Mechanisms of the Death-Inducing Signaling Complex
Caspase-8 activation can be triggered by death receptor-mediated formation of the death-inducing signaling complex (DISC) and by the inflammasome adaptor ASC. Caspase-8 assembles with FADD at the DISC and with ASC at the inflammasome through its tandem death effector domain (tDED), which is regulate...
Gespeichert in:
Veröffentlicht in: | Molecular cell 2016-10, Vol.64 (2), p.236-250 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 250 |
---|---|
container_issue | 2 |
container_start_page | 236 |
container_title | Molecular cell |
container_volume | 64 |
creator | Fu, Tian-Min Li, Yang Lu, Alvin Li, Zongli Vajjhala, Parimala R. Cruz, Anthony C. Srivastava, Devendra B. DiMaio, Frank Penczek, Pawel A. Siegel, Richard M. Stacey, Katryn J. Egelman, Edward H. Wu, Hao |
description | Caspase-8 activation can be triggered by death receptor-mediated formation of the death-inducing signaling complex (DISC) and by the inflammasome adaptor ASC. Caspase-8 assembles with FADD at the DISC and with ASC at the inflammasome through its tandem death effector domain (tDED), which is regulated by the tDED-containing cellular inhibitor cFLIP and the viral inhibitor MC159. Here we present the caspase-8 tDED filament structure determined by cryoelectron microscopy. Extensive assembly interfaces not predicted by the previously proposed linear DED chain model were uncovered, and were further confirmed by structure-based mutagenesis in filament formation in vitro and Fas-induced apoptosis and ASC-mediated caspase-8 recruitment in cells. Structurally, the two DEDs in caspase-8 use quasi-equivalent contacts to enable assembly. Using the tDED filament structure as a template, structural analyses reveal the interaction surfaces between FADD and caspase-8 and the distinct mechanisms of regulation by cFLIP and MC159 through comingling and capping, respectively.
[Display omitted]
•Caspase-8 tDED assembles into filaments through quasi-equivalent contacts•The assembly of caspase-8 filaments is nucleated by the upstream Fas/FADD complex•cFLIP tDED also forms filaments, which interact with caspase-8 by comingling•MC159 inhibits caspase-8 filament assembly by a unique capping mechanism
How caspase-8 is activated has been a long-standing question. Fu et al. show that its tDED forms filaments using quasi-equivalent interactions. Cryo-EM structure of the filament reveals mechanisms of caspase-8 activation and its regulation by cFLIP and MC159. |
doi_str_mv | 10.1016/j.molcel.2016.09.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5089849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276516305263</els_id><sourcerecordid>2000193399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-3519bcb360bf37e2126b2fbdc521133467d14b07c9d1e046aeaa1876681095a93</originalsourceid><addsrcrecordid>eNp9UcFu1DAUjBCIlsIfIGRx6iXBdhInviBV2S1UaoVEy9lynLe7Xjn2Yjsr9gP4bxzttoULJz_b8-bNvMmy9wQXBBP2aVuMzigwBU23AvMCY_4iOyeYN3lFWPXyVNOG1WfZmxC2GJOqbvnr7Iw2TcUwac6z350_uHx5h-6jn1ScPCC3Qp0MOxkgb9GDtAOMaLFcoGtt5Ag2ou-wB2kCugoBxt4cUMKkx_VkZNTOojtQG2l1GMPMFTeAFiDjJr-xw6S0XaN7vbbSzFXnxp2BX2-zV6vECO9O50X243r50H3Nb799uemubnOVdMe8rAnvVV8y3K_KBiihrKerflA1JaQsK9YMpOpxo_hAAFdMgpSkbRhr0yZqycuL7PORdzf1IwwqufHSiJ3Xo_QH4aQW__5YvRFrtxc1bnlbzQQfjwQuRC2C0jF5Vc5aUFGQijJakwS6PE3x7ucEIYpRh5SUkRbcFATFKQlelnzmq45Q5V0IHlZPWggWc8xiK44xizlmgblIMae2D3_7eGp6zPXZKKRt7jX4WStYBYP2s9TB6f9P-APRlLua</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2000193399</pqid></control><display><type>article</type><title>Cryo-EM Structure of Caspase-8 Tandem DED Filament Reveals Assembly and Regulation Mechanisms of the Death-Inducing Signaling Complex</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Fu, Tian-Min ; Li, Yang ; Lu, Alvin ; Li, Zongli ; Vajjhala, Parimala R. ; Cruz, Anthony C. ; Srivastava, Devendra B. ; DiMaio, Frank ; Penczek, Pawel A. ; Siegel, Richard M. ; Stacey, Katryn J. ; Egelman, Edward H. ; Wu, Hao</creator><creatorcontrib>Fu, Tian-Min ; Li, Yang ; Lu, Alvin ; Li, Zongli ; Vajjhala, Parimala R. ; Cruz, Anthony C. ; Srivastava, Devendra B. ; DiMaio, Frank ; Penczek, Pawel A. ; Siegel, Richard M. ; Stacey, Katryn J. ; Egelman, Edward H. ; Wu, Hao ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Caspase-8 activation can be triggered by death receptor-mediated formation of the death-inducing signaling complex (DISC) and by the inflammasome adaptor ASC. Caspase-8 assembles with FADD at the DISC and with ASC at the inflammasome through its tandem death effector domain (tDED), which is regulated by the tDED-containing cellular inhibitor cFLIP and the viral inhibitor MC159. Here we present the caspase-8 tDED filament structure determined by cryoelectron microscopy. Extensive assembly interfaces not predicted by the previously proposed linear DED chain model were uncovered, and were further confirmed by structure-based mutagenesis in filament formation in vitro and Fas-induced apoptosis and ASC-mediated caspase-8 recruitment in cells. Structurally, the two DEDs in caspase-8 use quasi-equivalent contacts to enable assembly. Using the tDED filament structure as a template, structural analyses reveal the interaction surfaces between FADD and caspase-8 and the distinct mechanisms of regulation by cFLIP and MC159 through comingling and capping, respectively.
[Display omitted]
•Caspase-8 tDED assembles into filaments through quasi-equivalent contacts•The assembly of caspase-8 filaments is nucleated by the upstream Fas/FADD complex•cFLIP tDED also forms filaments, which interact with caspase-8 by comingling•MC159 inhibits caspase-8 filament assembly by a unique capping mechanism
How caspase-8 is activated has been a long-standing question. Fu et al. show that its tDED forms filaments using quasi-equivalent interactions. Cryo-EM structure of the filament reveals mechanisms of caspase-8 activation and its regulation by cFLIP and MC159.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2016.09.009</identifier><identifier>PMID: 27746017</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; apoptosis ; Apoptosis - drug effects ; Binding Sites ; CARD Signaling Adaptor Proteins ; CASP8 and FADD-Like Apoptosis Regulating Protein - chemistry ; CASP8 and FADD-Like Apoptosis Regulating Protein - genetics ; CASP8 and FADD-Like Apoptosis Regulating Protein - metabolism ; Caspase 8 - chemistry ; Caspase 8 - genetics ; Caspase 8 - metabolism ; caspase-8 ; cFLIP ; cryo-electron microscopy ; Cryoelectron Microscopy ; Cytoskeletal Proteins - chemistry ; Cytoskeletal Proteins - genetics ; Cytoskeletal Proteins - metabolism ; death ; death domain ; Death Domain Receptor Signaling Adaptor Proteins - chemistry ; Death Domain Receptor Signaling Adaptor Proteins - genetics ; Death Domain Receptor Signaling Adaptor Proteins - metabolism ; Death Effector Domain ; DED ; DISC ; FADD ; Fas ; fas Receptor - pharmacology ; Fas-Associated Death Domain Protein - chemistry ; Fas-Associated Death Domain Protein - genetics ; Fas-Associated Death Domain Protein - metabolism ; filament ; Gene Expression ; Humans ; Jurkat Cells ; MC159 ; mutagenesis ; Plasmids - chemistry ; Plasmids - metabolism ; Protein Binding ; Protein Conformation, alpha-Helical ; Protein Conformation, beta-Strand ; Protein Interaction Domains and Motifs ; Recombinant Fusion Proteins - chemistry ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Sequence Alignment ; Sequence Homology, Amino Acid ; Transfection ; vFLIP ; Viral Proteins - chemistry ; Viral Proteins - genetics ; Viral Proteins - metabolism</subject><ispartof>Molecular cell, 2016-10, Vol.64 (2), p.236-250</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c589t-3519bcb360bf37e2126b2fbdc521133467d14b07c9d1e046aeaa1876681095a93</citedby><cites>FETCH-LOGICAL-c589t-3519bcb360bf37e2126b2fbdc521133467d14b07c9d1e046aeaa1876681095a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1097276516305263$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27746017$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1426251$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Tian-Min</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Lu, Alvin</creatorcontrib><creatorcontrib>Li, Zongli</creatorcontrib><creatorcontrib>Vajjhala, Parimala R.</creatorcontrib><creatorcontrib>Cruz, Anthony C.</creatorcontrib><creatorcontrib>Srivastava, Devendra B.</creatorcontrib><creatorcontrib>DiMaio, Frank</creatorcontrib><creatorcontrib>Penczek, Pawel A.</creatorcontrib><creatorcontrib>Siegel, Richard M.</creatorcontrib><creatorcontrib>Stacey, Katryn J.</creatorcontrib><creatorcontrib>Egelman, Edward H.</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Cryo-EM Structure of Caspase-8 Tandem DED Filament Reveals Assembly and Regulation Mechanisms of the Death-Inducing Signaling Complex</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Caspase-8 activation can be triggered by death receptor-mediated formation of the death-inducing signaling complex (DISC) and by the inflammasome adaptor ASC. Caspase-8 assembles with FADD at the DISC and with ASC at the inflammasome through its tandem death effector domain (tDED), which is regulated by the tDED-containing cellular inhibitor cFLIP and the viral inhibitor MC159. Here we present the caspase-8 tDED filament structure determined by cryoelectron microscopy. Extensive assembly interfaces not predicted by the previously proposed linear DED chain model were uncovered, and were further confirmed by structure-based mutagenesis in filament formation in vitro and Fas-induced apoptosis and ASC-mediated caspase-8 recruitment in cells. Structurally, the two DEDs in caspase-8 use quasi-equivalent contacts to enable assembly. Using the tDED filament structure as a template, structural analyses reveal the interaction surfaces between FADD and caspase-8 and the distinct mechanisms of regulation by cFLIP and MC159 through comingling and capping, respectively.
[Display omitted]
•Caspase-8 tDED assembles into filaments through quasi-equivalent contacts•The assembly of caspase-8 filaments is nucleated by the upstream Fas/FADD complex•cFLIP tDED also forms filaments, which interact with caspase-8 by comingling•MC159 inhibits caspase-8 filament assembly by a unique capping mechanism
How caspase-8 is activated has been a long-standing question. Fu et al. show that its tDED forms filaments using quasi-equivalent interactions. Cryo-EM structure of the filament reveals mechanisms of caspase-8 activation and its regulation by cFLIP and MC159.</description><subject>Amino Acid Sequence</subject><subject>apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Binding Sites</subject><subject>CARD Signaling Adaptor Proteins</subject><subject>CASP8 and FADD-Like Apoptosis Regulating Protein - chemistry</subject><subject>CASP8 and FADD-Like Apoptosis Regulating Protein - genetics</subject><subject>CASP8 and FADD-Like Apoptosis Regulating Protein - metabolism</subject><subject>Caspase 8 - chemistry</subject><subject>Caspase 8 - genetics</subject><subject>Caspase 8 - metabolism</subject><subject>caspase-8</subject><subject>cFLIP</subject><subject>cryo-electron microscopy</subject><subject>Cryoelectron Microscopy</subject><subject>Cytoskeletal Proteins - chemistry</subject><subject>Cytoskeletal Proteins - genetics</subject><subject>Cytoskeletal Proteins - metabolism</subject><subject>death</subject><subject>death domain</subject><subject>Death Domain Receptor Signaling Adaptor Proteins - chemistry</subject><subject>Death Domain Receptor Signaling Adaptor Proteins - genetics</subject><subject>Death Domain Receptor Signaling Adaptor Proteins - metabolism</subject><subject>Death Effector Domain</subject><subject>DED</subject><subject>DISC</subject><subject>FADD</subject><subject>Fas</subject><subject>fas Receptor - pharmacology</subject><subject>Fas-Associated Death Domain Protein - chemistry</subject><subject>Fas-Associated Death Domain Protein - genetics</subject><subject>Fas-Associated Death Domain Protein - metabolism</subject><subject>filament</subject><subject>Gene Expression</subject><subject>Humans</subject><subject>Jurkat Cells</subject><subject>MC159</subject><subject>mutagenesis</subject><subject>Plasmids - chemistry</subject><subject>Plasmids - metabolism</subject><subject>Protein Binding</subject><subject>Protein Conformation, alpha-Helical</subject><subject>Protein Conformation, beta-Strand</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Sequence Alignment</subject><subject>Sequence Homology, Amino Acid</subject><subject>Transfection</subject><subject>vFLIP</subject><subject>Viral Proteins - chemistry</subject><subject>Viral Proteins - genetics</subject><subject>Viral Proteins - metabolism</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UcFu1DAUjBCIlsIfIGRx6iXBdhInviBV2S1UaoVEy9lynLe7Xjn2Yjsr9gP4bxzttoULJz_b8-bNvMmy9wQXBBP2aVuMzigwBU23AvMCY_4iOyeYN3lFWPXyVNOG1WfZmxC2GJOqbvnr7Iw2TcUwac6z350_uHx5h-6jn1ScPCC3Qp0MOxkgb9GDtAOMaLFcoGtt5Ag2ou-wB2kCugoBxt4cUMKkx_VkZNTOojtQG2l1GMPMFTeAFiDjJr-xw6S0XaN7vbbSzFXnxp2BX2-zV6vECO9O50X243r50H3Nb799uemubnOVdMe8rAnvVV8y3K_KBiihrKerflA1JaQsK9YMpOpxo_hAAFdMgpSkbRhr0yZqycuL7PORdzf1IwwqufHSiJ3Xo_QH4aQW__5YvRFrtxc1bnlbzQQfjwQuRC2C0jF5Vc5aUFGQijJakwS6PE3x7ucEIYpRh5SUkRbcFATFKQlelnzmq45Q5V0IHlZPWggWc8xiK44xizlmgblIMae2D3_7eGp6zPXZKKRt7jX4WStYBYP2s9TB6f9P-APRlLua</recordid><startdate>20161020</startdate><enddate>20161020</enddate><creator>Fu, Tian-Min</creator><creator>Li, Yang</creator><creator>Lu, Alvin</creator><creator>Li, Zongli</creator><creator>Vajjhala, Parimala R.</creator><creator>Cruz, Anthony C.</creator><creator>Srivastava, Devendra B.</creator><creator>DiMaio, Frank</creator><creator>Penczek, Pawel A.</creator><creator>Siegel, Richard M.</creator><creator>Stacey, Katryn J.</creator><creator>Egelman, Edward H.</creator><creator>Wu, Hao</creator><general>Elsevier Inc</general><general>Elsevier - Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20161020</creationdate><title>Cryo-EM Structure of Caspase-8 Tandem DED Filament Reveals Assembly and Regulation Mechanisms of the Death-Inducing Signaling Complex</title><author>Fu, Tian-Min ; Li, Yang ; Lu, Alvin ; Li, Zongli ; Vajjhala, Parimala R. ; Cruz, Anthony C. ; Srivastava, Devendra B. ; DiMaio, Frank ; Penczek, Pawel A. ; Siegel, Richard M. ; Stacey, Katryn J. ; Egelman, Edward H. ; Wu, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-3519bcb360bf37e2126b2fbdc521133467d14b07c9d1e046aeaa1876681095a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino Acid Sequence</topic><topic>apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Binding Sites</topic><topic>CARD Signaling Adaptor Proteins</topic><topic>CASP8 and FADD-Like Apoptosis Regulating Protein - chemistry</topic><topic>CASP8 and FADD-Like Apoptosis Regulating Protein - genetics</topic><topic>CASP8 and FADD-Like Apoptosis Regulating Protein - metabolism</topic><topic>Caspase 8 - chemistry</topic><topic>Caspase 8 - genetics</topic><topic>Caspase 8 - metabolism</topic><topic>caspase-8</topic><topic>cFLIP</topic><topic>cryo-electron microscopy</topic><topic>Cryoelectron Microscopy</topic><topic>Cytoskeletal Proteins - chemistry</topic><topic>Cytoskeletal Proteins - genetics</topic><topic>Cytoskeletal Proteins - metabolism</topic><topic>death</topic><topic>death domain</topic><topic>Death Domain Receptor Signaling Adaptor Proteins - chemistry</topic><topic>Death Domain Receptor Signaling Adaptor Proteins - genetics</topic><topic>Death Domain Receptor Signaling Adaptor Proteins - metabolism</topic><topic>Death Effector Domain</topic><topic>DED</topic><topic>DISC</topic><topic>FADD</topic><topic>Fas</topic><topic>fas Receptor - pharmacology</topic><topic>Fas-Associated Death Domain Protein - chemistry</topic><topic>Fas-Associated Death Domain Protein - genetics</topic><topic>Fas-Associated Death Domain Protein - metabolism</topic><topic>filament</topic><topic>Gene Expression</topic><topic>Humans</topic><topic>Jurkat Cells</topic><topic>MC159</topic><topic>mutagenesis</topic><topic>Plasmids - chemistry</topic><topic>Plasmids - metabolism</topic><topic>Protein Binding</topic><topic>Protein Conformation, alpha-Helical</topic><topic>Protein Conformation, beta-Strand</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Sequence Alignment</topic><topic>Sequence Homology, Amino Acid</topic><topic>Transfection</topic><topic>vFLIP</topic><topic>Viral Proteins - chemistry</topic><topic>Viral Proteins - genetics</topic><topic>Viral Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Tian-Min</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Lu, Alvin</creatorcontrib><creatorcontrib>Li, Zongli</creatorcontrib><creatorcontrib>Vajjhala, Parimala R.</creatorcontrib><creatorcontrib>Cruz, Anthony C.</creatorcontrib><creatorcontrib>Srivastava, Devendra B.</creatorcontrib><creatorcontrib>DiMaio, Frank</creatorcontrib><creatorcontrib>Penczek, Pawel A.</creatorcontrib><creatorcontrib>Siegel, Richard M.</creatorcontrib><creatorcontrib>Stacey, Katryn J.</creatorcontrib><creatorcontrib>Egelman, Edward H.</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Tian-Min</au><au>Li, Yang</au><au>Lu, Alvin</au><au>Li, Zongli</au><au>Vajjhala, Parimala R.</au><au>Cruz, Anthony C.</au><au>Srivastava, Devendra B.</au><au>DiMaio, Frank</au><au>Penczek, Pawel A.</au><au>Siegel, Richard M.</au><au>Stacey, Katryn J.</au><au>Egelman, Edward H.</au><au>Wu, Hao</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cryo-EM Structure of Caspase-8 Tandem DED Filament Reveals Assembly and Regulation Mechanisms of the Death-Inducing Signaling Complex</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2016-10-20</date><risdate>2016</risdate><volume>64</volume><issue>2</issue><spage>236</spage><epage>250</epage><pages>236-250</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>Caspase-8 activation can be triggered by death receptor-mediated formation of the death-inducing signaling complex (DISC) and by the inflammasome adaptor ASC. Caspase-8 assembles with FADD at the DISC and with ASC at the inflammasome through its tandem death effector domain (tDED), which is regulated by the tDED-containing cellular inhibitor cFLIP and the viral inhibitor MC159. Here we present the caspase-8 tDED filament structure determined by cryoelectron microscopy. Extensive assembly interfaces not predicted by the previously proposed linear DED chain model were uncovered, and were further confirmed by structure-based mutagenesis in filament formation in vitro and Fas-induced apoptosis and ASC-mediated caspase-8 recruitment in cells. Structurally, the two DEDs in caspase-8 use quasi-equivalent contacts to enable assembly. Using the tDED filament structure as a template, structural analyses reveal the interaction surfaces between FADD and caspase-8 and the distinct mechanisms of regulation by cFLIP and MC159 through comingling and capping, respectively.
[Display omitted]
•Caspase-8 tDED assembles into filaments through quasi-equivalent contacts•The assembly of caspase-8 filaments is nucleated by the upstream Fas/FADD complex•cFLIP tDED also forms filaments, which interact with caspase-8 by comingling•MC159 inhibits caspase-8 filament assembly by a unique capping mechanism
How caspase-8 is activated has been a long-standing question. Fu et al. show that its tDED forms filaments using quasi-equivalent interactions. Cryo-EM structure of the filament reveals mechanisms of caspase-8 activation and its regulation by cFLIP and MC159.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27746017</pmid><doi>10.1016/j.molcel.2016.09.009</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-2765 |
ispartof | Molecular cell, 2016-10, Vol.64 (2), p.236-250 |
issn | 1097-2765 1097-4164 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5089849 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence apoptosis Apoptosis - drug effects Binding Sites CARD Signaling Adaptor Proteins CASP8 and FADD-Like Apoptosis Regulating Protein - chemistry CASP8 and FADD-Like Apoptosis Regulating Protein - genetics CASP8 and FADD-Like Apoptosis Regulating Protein - metabolism Caspase 8 - chemistry Caspase 8 - genetics Caspase 8 - metabolism caspase-8 cFLIP cryo-electron microscopy Cryoelectron Microscopy Cytoskeletal Proteins - chemistry Cytoskeletal Proteins - genetics Cytoskeletal Proteins - metabolism death death domain Death Domain Receptor Signaling Adaptor Proteins - chemistry Death Domain Receptor Signaling Adaptor Proteins - genetics Death Domain Receptor Signaling Adaptor Proteins - metabolism Death Effector Domain DED DISC FADD Fas fas Receptor - pharmacology Fas-Associated Death Domain Protein - chemistry Fas-Associated Death Domain Protein - genetics Fas-Associated Death Domain Protein - metabolism filament Gene Expression Humans Jurkat Cells MC159 mutagenesis Plasmids - chemistry Plasmids - metabolism Protein Binding Protein Conformation, alpha-Helical Protein Conformation, beta-Strand Protein Interaction Domains and Motifs Recombinant Fusion Proteins - chemistry Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism Sequence Alignment Sequence Homology, Amino Acid Transfection vFLIP Viral Proteins - chemistry Viral Proteins - genetics Viral Proteins - metabolism |
title | Cryo-EM Structure of Caspase-8 Tandem DED Filament Reveals Assembly and Regulation Mechanisms of the Death-Inducing Signaling Complex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A25%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cryo-EM%20Structure%20of%20Caspase-8%20Tandem%20DED%20Filament%20Reveals%20Assembly%20and%20Regulation%20Mechanisms%20of%20the%20Death-Inducing%20Signaling%20Complex&rft.jtitle=Molecular%20cell&rft.au=Fu,%20Tian-Min&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2016-10-20&rft.volume=64&rft.issue=2&rft.spage=236&rft.epage=250&rft.pages=236-250&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2016.09.009&rft_dat=%3Cproquest_pubme%3E2000193399%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2000193399&rft_id=info:pmid/27746017&rft_els_id=S1097276516305263&rfr_iscdi=true |