Longitudinal quantification of the gingival crevicular fluid proteome during progression from gingivitis to periodontitis in a canine model

Aim Inflammatory periodontal disease is widespread in dogs. This study evaluated site‐specific changes in the canine gingival crevicular fluid (GCF) proteome during longitudinal progression from very mild gingivitis to mild periodontitis. Periodontitis diagnosis in dogs requires general anaesthesia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical periodontology 2016-07, Vol.43 (7), p.584-594
Hauptverfasser: Davis, Ian J., Jones, Andrew W., Creese, Andrew J., Staunton, Ruth, Atwal, Jujhar, Chapple, Iain L. C., Harris, Stephen, Grant, Melissa M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aim Inflammatory periodontal disease is widespread in dogs. This study evaluated site‐specific changes in the canine gingival crevicular fluid (GCF) proteome during longitudinal progression from very mild gingivitis to mild periodontitis. Periodontitis diagnosis in dogs requires general anaesthesia with associated risks and costs; our ultimate aim was to develop a periodontitis diagnostic for application in conscious dogs. The objective of this work was to identify potential biomarkers of periodontal disease progression in dogs. Material and Methods Gingival crevicular fluid was sampled from a total of 10 teeth in eight dogs at three different stages of health/disease and samples prepared for quantitative mass spectrometry (data available via ProteomeXchange; identifier PXD003337). A univariate mixed model analysis determined significantly altered proteins between health states and six were evaluated by ELISA. Results Four hundred and six proteins were identified with 84 present in all samples. The prevalence of 40 proteins was found to be significantly changed in periodontitis relative to gingivitis. ELISA measurements confirmed that haptoglobin was significantly increased. Conclusions This study demonstrates for the first time that proteins detected by mass spectrometry have potential to identify novel biomarkers for canine periodontal disease. Further work is required to validate additional biomarkers for a periodontitis diagnostic.
ISSN:0303-6979
1600-051X
DOI:10.1111/jcpe.12548