ATM/G6PD-driven redox metabolism promotes FLT3 inhibitor resistance in acute myeloid leukemia

Activating mutations in FMS-like tyrosine kinase 3 (FLT3) are common in acute myeloid leukemia (AML) and drive leukemic cell growth and survival. Although FLT3 inhibitors have shown considerable promise for the treatment of AML, they ultimately fail to achieve long-term remissions as monotherapy. To...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2016-10, Vol.113 (43), p.E6669-E6678
Hauptverfasser: Gregory, Mark A., D’Alessandro, Angelo, Alvarez-Calderon, Francesca, Kim, Jihye, Nemkov, Travis, Adane, Biniam, Rozhok, Andrii I., Kumar, Amit, Kumar, Vijay, Pollyea, Daniel A., Wempe, Michael F., Jordan, Craig T., Serkova, Natalie J., Choon Tan, Aik, Hansen, Kirk C., DeGregori, James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E6678
container_issue 43
container_start_page E6669
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 113
creator Gregory, Mark A.
D’Alessandro, Angelo
Alvarez-Calderon, Francesca
Kim, Jihye
Nemkov, Travis
Adane, Biniam
Rozhok, Andrii I.
Kumar, Amit
Kumar, Vijay
Pollyea, Daniel A.
Wempe, Michael F.
Jordan, Craig T.
Serkova, Natalie J.
Choon Tan, Aik
Hansen, Kirk C.
DeGregori, James
description Activating mutations in FMS-like tyrosine kinase 3 (FLT3) are common in acute myeloid leukemia (AML) and drive leukemic cell growth and survival. Although FLT3 inhibitors have shown considerable promise for the treatment of AML, they ultimately fail to achieve long-term remissions as monotherapy. To identify genetic targets that can sensitize AML cells to killing by FLT3 inhibitors, we performed a genome-wide RNA interference (RNAi)-based screen that identified ATM (ataxia telangiectasia mutated) as being synthetic lethal with FLT3 inhibitor therapy. We found that inactivating ATM or its downstream effector glucose 6-phosphate dehydrogenase (G6PD) sensitizes AML cells to FLT3 inhibitor induced apoptosis. Examination of the cellular metabolome showed that FLT3 inhibition by itself causes profound alterations in central carbon metabolism, resulting in impaired production of the antioxidant factor glutathione, which was further impaired by ATM or G6PD inactivation. Moreover, FLT3 inhibition elicited severe mitochondrial oxidative stress that is causative in apoptosis and is exacerbated by ATM/G6PD inhibition. The use of an agent that intensifies mitochondrial oxidative stress in combination with a FLT3 inhibitor augmented elimination of AML cells in vitro and in vivo, revealing a therapeutic strategy for the improved treatment of FLT3 mutated AML.
doi_str_mv 10.1073/pnas.1603876113
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5086999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26472264</jstor_id><sourcerecordid>26472264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-d1e1f6e406ce3e4daa0b036a25f5778f2312e154d34557e1cb59ce5012d5fecc3</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi1ERZfCmRMoEhcu6Y6_kwtSVWiptAgOyxFZjjOhXpJ4aycV_fd42dKWnrjYkufxq5l5CHlF4ZiC5svtaNMxVcArrSjlT8iCQk1LJWp4ShYATJeVYOKQPE9pAwC1rOAZOWRa1xS4WpDvJ-vPy3P19UPZRn-NYxGxDb-KASfbhN6nodjGMIQJU3G2WvPCj5e-8VOIGUw-TXZ0mB8L6-YJi-EG--Dbosf5Jw7eviAHne0Tvry9j8i3s4_r00_l6sv5xenJqnRCq6lsKdJOoQDlkKNorYUmd2eZ7KTWVcc4ZUilaLmQUiN1jawdSqCslR06x4_I-33udm4GbB2OU7S92UY_2HhjgvXm38roL82PcG0kVKqu6xzw7jYghqsZ02QGnxz2vR0xzMnQSrOKCcn0f6BcqooD36W-fYRuwhzHvIk_VM0UMMjUck-5GFKK2N31TcHsLJudZXNvOf9483DcO_6v1gy83gOblFXd15XQLB_8NwkJrTw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835926020</pqid></control><display><type>article</type><title>ATM/G6PD-driven redox metabolism promotes FLT3 inhibitor resistance in acute myeloid leukemia</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Gregory, Mark A. ; D’Alessandro, Angelo ; Alvarez-Calderon, Francesca ; Kim, Jihye ; Nemkov, Travis ; Adane, Biniam ; Rozhok, Andrii I. ; Kumar, Amit ; Kumar, Vijay ; Pollyea, Daniel A. ; Wempe, Michael F. ; Jordan, Craig T. ; Serkova, Natalie J. ; Choon Tan, Aik ; Hansen, Kirk C. ; DeGregori, James</creator><creatorcontrib>Gregory, Mark A. ; D’Alessandro, Angelo ; Alvarez-Calderon, Francesca ; Kim, Jihye ; Nemkov, Travis ; Adane, Biniam ; Rozhok, Andrii I. ; Kumar, Amit ; Kumar, Vijay ; Pollyea, Daniel A. ; Wempe, Michael F. ; Jordan, Craig T. ; Serkova, Natalie J. ; Choon Tan, Aik ; Hansen, Kirk C. ; DeGregori, James</creatorcontrib><description>Activating mutations in FMS-like tyrosine kinase 3 (FLT3) are common in acute myeloid leukemia (AML) and drive leukemic cell growth and survival. Although FLT3 inhibitors have shown considerable promise for the treatment of AML, they ultimately fail to achieve long-term remissions as monotherapy. To identify genetic targets that can sensitize AML cells to killing by FLT3 inhibitors, we performed a genome-wide RNA interference (RNAi)-based screen that identified ATM (ataxia telangiectasia mutated) as being synthetic lethal with FLT3 inhibitor therapy. We found that inactivating ATM or its downstream effector glucose 6-phosphate dehydrogenase (G6PD) sensitizes AML cells to FLT3 inhibitor induced apoptosis. Examination of the cellular metabolome showed that FLT3 inhibition by itself causes profound alterations in central carbon metabolism, resulting in impaired production of the antioxidant factor glutathione, which was further impaired by ATM or G6PD inactivation. Moreover, FLT3 inhibition elicited severe mitochondrial oxidative stress that is causative in apoptosis and is exacerbated by ATM/G6PD inhibition. The use of an agent that intensifies mitochondrial oxidative stress in combination with a FLT3 inhibitor augmented elimination of AML cells in vitro and in vivo, revealing a therapeutic strategy for the improved treatment of FLT3 mutated AML.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1603876113</identifier><identifier>PMID: 27791036</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Antineoplastic Agents - pharmacology ; Ataxia Telangiectasia Mutated Proteins - antagonists &amp; inhibitors ; Ataxia Telangiectasia Mutated Proteins - genetics ; Ataxia Telangiectasia Mutated Proteins - metabolism ; Benzothiazoles - pharmacology ; Biological Sciences ; Cell growth ; Cell Line, Tumor ; Cell Survival - drug effects ; Drug Resistance, Neoplasm - genetics ; Drug Therapy, Combination ; Female ; fms-Like Tyrosine Kinase 3 - antagonists &amp; inhibitors ; fms-Like Tyrosine Kinase 3 - genetics ; fms-Like Tyrosine Kinase 3 - metabolism ; Gene Expression Regulation, Leukemic ; Genetics ; Glucosephosphate Dehydrogenase - antagonists &amp; inhibitors ; Glucosephosphate Dehydrogenase - genetics ; Glucosephosphate Dehydrogenase - metabolism ; Humans ; Hydrazines - pharmacology ; Kinases ; Leukemia ; Leukemia, Myeloid, Acute - drug therapy ; Leukemia, Myeloid, Acute - genetics ; Leukemia, Myeloid, Acute - mortality ; Leukemia, Myeloid, Acute - pathology ; Metabolism ; Mice, Inbred NOD ; Middle Aged ; Mutation ; Oxidation-Reduction ; Phenylurea Compounds - pharmacology ; PNAS Plus ; Protein Kinase Inhibitors - pharmacology ; RNA, Small Interfering - genetics ; RNA, Small Interfering - metabolism ; Signal Transduction ; Survival Analysis ; Xenograft Model Antitumor Assays</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-10, Vol.113 (43), p.E6669-E6678</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Oct 25, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-d1e1f6e406ce3e4daa0b036a25f5778f2312e154d34557e1cb59ce5012d5fecc3</citedby><cites>FETCH-LOGICAL-c476t-d1e1f6e406ce3e4daa0b036a25f5778f2312e154d34557e1cb59ce5012d5fecc3</cites><orcidid>0000-0001-5587-4686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26472264$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26472264$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27791036$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gregory, Mark A.</creatorcontrib><creatorcontrib>D’Alessandro, Angelo</creatorcontrib><creatorcontrib>Alvarez-Calderon, Francesca</creatorcontrib><creatorcontrib>Kim, Jihye</creatorcontrib><creatorcontrib>Nemkov, Travis</creatorcontrib><creatorcontrib>Adane, Biniam</creatorcontrib><creatorcontrib>Rozhok, Andrii I.</creatorcontrib><creatorcontrib>Kumar, Amit</creatorcontrib><creatorcontrib>Kumar, Vijay</creatorcontrib><creatorcontrib>Pollyea, Daniel A.</creatorcontrib><creatorcontrib>Wempe, Michael F.</creatorcontrib><creatorcontrib>Jordan, Craig T.</creatorcontrib><creatorcontrib>Serkova, Natalie J.</creatorcontrib><creatorcontrib>Choon Tan, Aik</creatorcontrib><creatorcontrib>Hansen, Kirk C.</creatorcontrib><creatorcontrib>DeGregori, James</creatorcontrib><title>ATM/G6PD-driven redox metabolism promotes FLT3 inhibitor resistance in acute myeloid leukemia</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Activating mutations in FMS-like tyrosine kinase 3 (FLT3) are common in acute myeloid leukemia (AML) and drive leukemic cell growth and survival. Although FLT3 inhibitors have shown considerable promise for the treatment of AML, they ultimately fail to achieve long-term remissions as monotherapy. To identify genetic targets that can sensitize AML cells to killing by FLT3 inhibitors, we performed a genome-wide RNA interference (RNAi)-based screen that identified ATM (ataxia telangiectasia mutated) as being synthetic lethal with FLT3 inhibitor therapy. We found that inactivating ATM or its downstream effector glucose 6-phosphate dehydrogenase (G6PD) sensitizes AML cells to FLT3 inhibitor induced apoptosis. Examination of the cellular metabolome showed that FLT3 inhibition by itself causes profound alterations in central carbon metabolism, resulting in impaired production of the antioxidant factor glutathione, which was further impaired by ATM or G6PD inactivation. Moreover, FLT3 inhibition elicited severe mitochondrial oxidative stress that is causative in apoptosis and is exacerbated by ATM/G6PD inhibition. The use of an agent that intensifies mitochondrial oxidative stress in combination with a FLT3 inhibitor augmented elimination of AML cells in vitro and in vivo, revealing a therapeutic strategy for the improved treatment of FLT3 mutated AML.</description><subject>Animals</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Ataxia Telangiectasia Mutated Proteins - antagonists &amp; inhibitors</subject><subject>Ataxia Telangiectasia Mutated Proteins - genetics</subject><subject>Ataxia Telangiectasia Mutated Proteins - metabolism</subject><subject>Benzothiazoles - pharmacology</subject><subject>Biological Sciences</subject><subject>Cell growth</subject><subject>Cell Line, Tumor</subject><subject>Cell Survival - drug effects</subject><subject>Drug Resistance, Neoplasm - genetics</subject><subject>Drug Therapy, Combination</subject><subject>Female</subject><subject>fms-Like Tyrosine Kinase 3 - antagonists &amp; inhibitors</subject><subject>fms-Like Tyrosine Kinase 3 - genetics</subject><subject>fms-Like Tyrosine Kinase 3 - metabolism</subject><subject>Gene Expression Regulation, Leukemic</subject><subject>Genetics</subject><subject>Glucosephosphate Dehydrogenase - antagonists &amp; inhibitors</subject><subject>Glucosephosphate Dehydrogenase - genetics</subject><subject>Glucosephosphate Dehydrogenase - metabolism</subject><subject>Humans</subject><subject>Hydrazines - pharmacology</subject><subject>Kinases</subject><subject>Leukemia</subject><subject>Leukemia, Myeloid, Acute - drug therapy</subject><subject>Leukemia, Myeloid, Acute - genetics</subject><subject>Leukemia, Myeloid, Acute - mortality</subject><subject>Leukemia, Myeloid, Acute - pathology</subject><subject>Metabolism</subject><subject>Mice, Inbred NOD</subject><subject>Middle Aged</subject><subject>Mutation</subject><subject>Oxidation-Reduction</subject><subject>Phenylurea Compounds - pharmacology</subject><subject>PNAS Plus</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Signal Transduction</subject><subject>Survival Analysis</subject><subject>Xenograft Model Antitumor Assays</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAQhi1ERZfCmRMoEhcu6Y6_kwtSVWiptAgOyxFZjjOhXpJ4aycV_fd42dKWnrjYkufxq5l5CHlF4ZiC5svtaNMxVcArrSjlT8iCQk1LJWp4ShYATJeVYOKQPE9pAwC1rOAZOWRa1xS4WpDvJ-vPy3P19UPZRn-NYxGxDb-KASfbhN6nodjGMIQJU3G2WvPCj5e-8VOIGUw-TXZ0mB8L6-YJi-EG--Dbosf5Jw7eviAHne0Tvry9j8i3s4_r00_l6sv5xenJqnRCq6lsKdJOoQDlkKNorYUmd2eZ7KTWVcc4ZUilaLmQUiN1jawdSqCslR06x4_I-33udm4GbB2OU7S92UY_2HhjgvXm38roL82PcG0kVKqu6xzw7jYghqsZ02QGnxz2vR0xzMnQSrOKCcn0f6BcqooD36W-fYRuwhzHvIk_VM0UMMjUck-5GFKK2N31TcHsLJudZXNvOf9483DcO_6v1gy83gOblFXd15XQLB_8NwkJrTw</recordid><startdate>20161025</startdate><enddate>20161025</enddate><creator>Gregory, Mark A.</creator><creator>D’Alessandro, Angelo</creator><creator>Alvarez-Calderon, Francesca</creator><creator>Kim, Jihye</creator><creator>Nemkov, Travis</creator><creator>Adane, Biniam</creator><creator>Rozhok, Andrii I.</creator><creator>Kumar, Amit</creator><creator>Kumar, Vijay</creator><creator>Pollyea, Daniel A.</creator><creator>Wempe, Michael F.</creator><creator>Jordan, Craig T.</creator><creator>Serkova, Natalie J.</creator><creator>Choon Tan, Aik</creator><creator>Hansen, Kirk C.</creator><creator>DeGregori, James</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5587-4686</orcidid></search><sort><creationdate>20161025</creationdate><title>ATM/G6PD-driven redox metabolism promotes FLT3 inhibitor resistance in acute myeloid leukemia</title><author>Gregory, Mark A. ; D’Alessandro, Angelo ; Alvarez-Calderon, Francesca ; Kim, Jihye ; Nemkov, Travis ; Adane, Biniam ; Rozhok, Andrii I. ; Kumar, Amit ; Kumar, Vijay ; Pollyea, Daniel A. ; Wempe, Michael F. ; Jordan, Craig T. ; Serkova, Natalie J. ; Choon Tan, Aik ; Hansen, Kirk C. ; DeGregori, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-d1e1f6e406ce3e4daa0b036a25f5778f2312e154d34557e1cb59ce5012d5fecc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Ataxia Telangiectasia Mutated Proteins - antagonists &amp; inhibitors</topic><topic>Ataxia Telangiectasia Mutated Proteins - genetics</topic><topic>Ataxia Telangiectasia Mutated Proteins - metabolism</topic><topic>Benzothiazoles - pharmacology</topic><topic>Biological Sciences</topic><topic>Cell growth</topic><topic>Cell Line, Tumor</topic><topic>Cell Survival - drug effects</topic><topic>Drug Resistance, Neoplasm - genetics</topic><topic>Drug Therapy, Combination</topic><topic>Female</topic><topic>fms-Like Tyrosine Kinase 3 - antagonists &amp; inhibitors</topic><topic>fms-Like Tyrosine Kinase 3 - genetics</topic><topic>fms-Like Tyrosine Kinase 3 - metabolism</topic><topic>Gene Expression Regulation, Leukemic</topic><topic>Genetics</topic><topic>Glucosephosphate Dehydrogenase - antagonists &amp; inhibitors</topic><topic>Glucosephosphate Dehydrogenase - genetics</topic><topic>Glucosephosphate Dehydrogenase - metabolism</topic><topic>Humans</topic><topic>Hydrazines - pharmacology</topic><topic>Kinases</topic><topic>Leukemia</topic><topic>Leukemia, Myeloid, Acute - drug therapy</topic><topic>Leukemia, Myeloid, Acute - genetics</topic><topic>Leukemia, Myeloid, Acute - mortality</topic><topic>Leukemia, Myeloid, Acute - pathology</topic><topic>Metabolism</topic><topic>Mice, Inbred NOD</topic><topic>Middle Aged</topic><topic>Mutation</topic><topic>Oxidation-Reduction</topic><topic>Phenylurea Compounds - pharmacology</topic><topic>PNAS Plus</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Signal Transduction</topic><topic>Survival Analysis</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gregory, Mark A.</creatorcontrib><creatorcontrib>D’Alessandro, Angelo</creatorcontrib><creatorcontrib>Alvarez-Calderon, Francesca</creatorcontrib><creatorcontrib>Kim, Jihye</creatorcontrib><creatorcontrib>Nemkov, Travis</creatorcontrib><creatorcontrib>Adane, Biniam</creatorcontrib><creatorcontrib>Rozhok, Andrii I.</creatorcontrib><creatorcontrib>Kumar, Amit</creatorcontrib><creatorcontrib>Kumar, Vijay</creatorcontrib><creatorcontrib>Pollyea, Daniel A.</creatorcontrib><creatorcontrib>Wempe, Michael F.</creatorcontrib><creatorcontrib>Jordan, Craig T.</creatorcontrib><creatorcontrib>Serkova, Natalie J.</creatorcontrib><creatorcontrib>Choon Tan, Aik</creatorcontrib><creatorcontrib>Hansen, Kirk C.</creatorcontrib><creatorcontrib>DeGregori, James</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gregory, Mark A.</au><au>D’Alessandro, Angelo</au><au>Alvarez-Calderon, Francesca</au><au>Kim, Jihye</au><au>Nemkov, Travis</au><au>Adane, Biniam</au><au>Rozhok, Andrii I.</au><au>Kumar, Amit</au><au>Kumar, Vijay</au><au>Pollyea, Daniel A.</au><au>Wempe, Michael F.</au><au>Jordan, Craig T.</au><au>Serkova, Natalie J.</au><au>Choon Tan, Aik</au><au>Hansen, Kirk C.</au><au>DeGregori, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ATM/G6PD-driven redox metabolism promotes FLT3 inhibitor resistance in acute myeloid leukemia</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-10-25</date><risdate>2016</risdate><volume>113</volume><issue>43</issue><spage>E6669</spage><epage>E6678</epage><pages>E6669-E6678</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Activating mutations in FMS-like tyrosine kinase 3 (FLT3) are common in acute myeloid leukemia (AML) and drive leukemic cell growth and survival. Although FLT3 inhibitors have shown considerable promise for the treatment of AML, they ultimately fail to achieve long-term remissions as monotherapy. To identify genetic targets that can sensitize AML cells to killing by FLT3 inhibitors, we performed a genome-wide RNA interference (RNAi)-based screen that identified ATM (ataxia telangiectasia mutated) as being synthetic lethal with FLT3 inhibitor therapy. We found that inactivating ATM or its downstream effector glucose 6-phosphate dehydrogenase (G6PD) sensitizes AML cells to FLT3 inhibitor induced apoptosis. Examination of the cellular metabolome showed that FLT3 inhibition by itself causes profound alterations in central carbon metabolism, resulting in impaired production of the antioxidant factor glutathione, which was further impaired by ATM or G6PD inactivation. Moreover, FLT3 inhibition elicited severe mitochondrial oxidative stress that is causative in apoptosis and is exacerbated by ATM/G6PD inhibition. The use of an agent that intensifies mitochondrial oxidative stress in combination with a FLT3 inhibitor augmented elimination of AML cells in vitro and in vivo, revealing a therapeutic strategy for the improved treatment of FLT3 mutated AML.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>27791036</pmid><doi>10.1073/pnas.1603876113</doi><orcidid>https://orcid.org/0000-0001-5587-4686</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2016-10, Vol.113 (43), p.E6669-E6678
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5086999
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Antineoplastic Agents - pharmacology
Ataxia Telangiectasia Mutated Proteins - antagonists & inhibitors
Ataxia Telangiectasia Mutated Proteins - genetics
Ataxia Telangiectasia Mutated Proteins - metabolism
Benzothiazoles - pharmacology
Biological Sciences
Cell growth
Cell Line, Tumor
Cell Survival - drug effects
Drug Resistance, Neoplasm - genetics
Drug Therapy, Combination
Female
fms-Like Tyrosine Kinase 3 - antagonists & inhibitors
fms-Like Tyrosine Kinase 3 - genetics
fms-Like Tyrosine Kinase 3 - metabolism
Gene Expression Regulation, Leukemic
Genetics
Glucosephosphate Dehydrogenase - antagonists & inhibitors
Glucosephosphate Dehydrogenase - genetics
Glucosephosphate Dehydrogenase - metabolism
Humans
Hydrazines - pharmacology
Kinases
Leukemia
Leukemia, Myeloid, Acute - drug therapy
Leukemia, Myeloid, Acute - genetics
Leukemia, Myeloid, Acute - mortality
Leukemia, Myeloid, Acute - pathology
Metabolism
Mice, Inbred NOD
Middle Aged
Mutation
Oxidation-Reduction
Phenylurea Compounds - pharmacology
PNAS Plus
Protein Kinase Inhibitors - pharmacology
RNA, Small Interfering - genetics
RNA, Small Interfering - metabolism
Signal Transduction
Survival Analysis
Xenograft Model Antitumor Assays
title ATM/G6PD-driven redox metabolism promotes FLT3 inhibitor resistance in acute myeloid leukemia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A14%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ATM/G6PD-driven%20redox%20metabolism%20promotes%20FLT3%20inhibitor%20resistance%20in%20acute%20myeloid%20leukemia&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Gregory,%20Mark%20A.&rft.date=2016-10-25&rft.volume=113&rft.issue=43&rft.spage=E6669&rft.epage=E6678&rft.pages=E6669-E6678&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1603876113&rft_dat=%3Cjstor_pubme%3E26472264%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835926020&rft_id=info:pmid/27791036&rft_jstor_id=26472264&rfr_iscdi=true