Context-specific inhibition of translation by ribosomal antibiotics targeting the peptidyl transferase center

The first broad-spectrum antibiotic chloramphenicol and one of the newest clinically important antibacterials, linezolid, inhibit protein synthesis by targeting the peptidyl transferase center of the bacterial ribosome. Because antibiotic binding should prevent the placement of aminoacyl-tRNA in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2016-10, Vol.113 (43), p.12150-12155
Hauptverfasser: Marks, James, Kannan, Krishna, Roncase, Emily J., Klepacki, Dorota, Kefi, Amira, Orelle, Cédric, Vázquez-Laslop, Nora, Mankin, Alexander S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12155
container_issue 43
container_start_page 12150
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 113
creator Marks, James
Kannan, Krishna
Roncase, Emily J.
Klepacki, Dorota
Kefi, Amira
Orelle, Cédric
Vázquez-Laslop, Nora
Mankin, Alexander S.
description The first broad-spectrum antibiotic chloramphenicol and one of the newest clinically important antibacterials, linezolid, inhibit protein synthesis by targeting the peptidyl transferase center of the bacterial ribosome. Because antibiotic binding should prevent the placement of aminoacyl-tRNA in the catalytic site, it is commonly assumed that these drugs are universal inhibitors of peptidyl transfer and should readily block the formation of every peptide bond. However, our in vitro experiments showed that chloramphenicol and linezolid stall ribosomes at specific mRNA locations. Treatment of bacterial cells with high concentrations of these antibiotics leads to preferential arrest of translation at defined sites, resulting in redistribution of the ribosomes on mRNA. Antibiotic-mediated inhibition of protein synthesis is most efficient when the nascent peptide in the ribosome carries an alanine residue and, to a lesser extent, serine or threonine in its penultimate position. In contrast, the inhibitory action of the drugs is counteracted by glycine when it is either at the nascent-chain C terminus or at the incoming aminoacyl-tRNA. The context-specific action of chloramphenicol illuminates the operation of the mechanism of inducible resistance that relies on programmed drug-induced translation arrest. In addition, our findings expose the functional interplay between the nascent chain and the peptidyl transferase center.
doi_str_mv 10.1073/pnas.1613055113
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5086994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26472217</jstor_id><sourcerecordid>26472217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-32e2b03689147c36567fd3917f87760ad5e560e356796c2612bab9f6016978fa3</originalsourceid><addsrcrecordid>eNqNkU1rGzEQhkVpaJy0555aFnrJZZORtKuPS6GYfkEgl_QstLJky-xKW0kO9b-vHKdJ21NAIDTzzDszehF6i-ESA6dXc9D5EjNMoe8xpi_QAoPELeskvEQLAMJb0ZHuFJ3lvAUA2Qt4hU4J5xLX7AJNyxiK_VXaPFvjnTeNDxs_-OJjaKJrStIhj_r-Oeyb5IeY46THRodSsVi8yU3RaW2LD-umbGwz27n41X481jqbdLaNsbVNeo1OnB6zffNwn6MfXz7fLr-11zdfvy8_Xbem70hpKbFkAMqExB03lPWMuxWVmDvBOQO96m3PwNIal8wQhsmgB-kYYCa5cJqeo49H3Xk3THZ1aJ70qObkJ532Kmqv_s0Ev1HreKd6EEzKrgpcPAik-HNnc1GTz8aOow427rLCghNBGOH4GWidU3T1VPTDf-g27lKoP3FPyboJyEpdHSmTYs7Juse5MaiD6-rgunpyvVa8_3vdR_6PzRV4dwS2ucT0lGcdJwRz-hu5TbPI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835926109</pqid></control><display><type>article</type><title>Context-specific inhibition of translation by ribosomal antibiotics targeting the peptidyl transferase center</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Marks, James ; Kannan, Krishna ; Roncase, Emily J. ; Klepacki, Dorota ; Kefi, Amira ; Orelle, Cédric ; Vázquez-Laslop, Nora ; Mankin, Alexander S.</creator><creatorcontrib>Marks, James ; Kannan, Krishna ; Roncase, Emily J. ; Klepacki, Dorota ; Kefi, Amira ; Orelle, Cédric ; Vázquez-Laslop, Nora ; Mankin, Alexander S.</creatorcontrib><description>The first broad-spectrum antibiotic chloramphenicol and one of the newest clinically important antibacterials, linezolid, inhibit protein synthesis by targeting the peptidyl transferase center of the bacterial ribosome. Because antibiotic binding should prevent the placement of aminoacyl-tRNA in the catalytic site, it is commonly assumed that these drugs are universal inhibitors of peptidyl transfer and should readily block the formation of every peptide bond. However, our in vitro experiments showed that chloramphenicol and linezolid stall ribosomes at specific mRNA locations. Treatment of bacterial cells with high concentrations of these antibiotics leads to preferential arrest of translation at defined sites, resulting in redistribution of the ribosomes on mRNA. Antibiotic-mediated inhibition of protein synthesis is most efficient when the nascent peptide in the ribosome carries an alanine residue and, to a lesser extent, serine or threonine in its penultimate position. In contrast, the inhibitory action of the drugs is counteracted by glycine when it is either at the nascent-chain C terminus or at the incoming aminoacyl-tRNA. The context-specific action of chloramphenicol illuminates the operation of the mechanism of inducible resistance that relies on programmed drug-induced translation arrest. In addition, our findings expose the functional interplay between the nascent chain and the peptidyl transferase center.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1613055113</identifier><identifier>PMID: 27791002</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acids - genetics ; Amino Acids - metabolism ; Antibiotics ; Binding Sites ; Biological Sciences ; Catalysis ; Chloramphenicol - chemistry ; Chloramphenicol - pharmacology ; Escherichia coli - drug effects ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Linezolid - chemistry ; Linezolid - pharmacology ; Models, Molecular ; Peptides ; Peptidyl Transferases - antagonists &amp; inhibitors ; Peptidyl Transferases - genetics ; Peptidyl Transferases - metabolism ; Protein Binding ; Protein Biosynthesis ; Protein synthesis ; Ribonucleic acid ; Ribosomes - drug effects ; Ribosomes - genetics ; Ribosomes - metabolism ; RNA ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; RNA, Transfer, Amino Acyl - genetics ; RNA, Transfer, Amino Acyl - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-10, Vol.113 (43), p.12150-12155</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Oct 25, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-32e2b03689147c36567fd3917f87760ad5e560e356796c2612bab9f6016978fa3</citedby><cites>FETCH-LOGICAL-c542t-32e2b03689147c36567fd3917f87760ad5e560e356796c2612bab9f6016978fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26472217$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26472217$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27791002$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marks, James</creatorcontrib><creatorcontrib>Kannan, Krishna</creatorcontrib><creatorcontrib>Roncase, Emily J.</creatorcontrib><creatorcontrib>Klepacki, Dorota</creatorcontrib><creatorcontrib>Kefi, Amira</creatorcontrib><creatorcontrib>Orelle, Cédric</creatorcontrib><creatorcontrib>Vázquez-Laslop, Nora</creatorcontrib><creatorcontrib>Mankin, Alexander S.</creatorcontrib><title>Context-specific inhibition of translation by ribosomal antibiotics targeting the peptidyl transferase center</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The first broad-spectrum antibiotic chloramphenicol and one of the newest clinically important antibacterials, linezolid, inhibit protein synthesis by targeting the peptidyl transferase center of the bacterial ribosome. Because antibiotic binding should prevent the placement of aminoacyl-tRNA in the catalytic site, it is commonly assumed that these drugs are universal inhibitors of peptidyl transfer and should readily block the formation of every peptide bond. However, our in vitro experiments showed that chloramphenicol and linezolid stall ribosomes at specific mRNA locations. Treatment of bacterial cells with high concentrations of these antibiotics leads to preferential arrest of translation at defined sites, resulting in redistribution of the ribosomes on mRNA. Antibiotic-mediated inhibition of protein synthesis is most efficient when the nascent peptide in the ribosome carries an alanine residue and, to a lesser extent, serine or threonine in its penultimate position. In contrast, the inhibitory action of the drugs is counteracted by glycine when it is either at the nascent-chain C terminus or at the incoming aminoacyl-tRNA. The context-specific action of chloramphenicol illuminates the operation of the mechanism of inducible resistance that relies on programmed drug-induced translation arrest. In addition, our findings expose the functional interplay between the nascent chain and the peptidyl transferase center.</description><subject>Amino Acids - genetics</subject><subject>Amino Acids - metabolism</subject><subject>Antibiotics</subject><subject>Binding Sites</subject><subject>Biological Sciences</subject><subject>Catalysis</subject><subject>Chloramphenicol - chemistry</subject><subject>Chloramphenicol - pharmacology</subject><subject>Escherichia coli - drug effects</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Linezolid - chemistry</subject><subject>Linezolid - pharmacology</subject><subject>Models, Molecular</subject><subject>Peptides</subject><subject>Peptidyl Transferases - antagonists &amp; inhibitors</subject><subject>Peptidyl Transferases - genetics</subject><subject>Peptidyl Transferases - metabolism</subject><subject>Protein Binding</subject><subject>Protein Biosynthesis</subject><subject>Protein synthesis</subject><subject>Ribonucleic acid</subject><subject>Ribosomes - drug effects</subject><subject>Ribosomes - genetics</subject><subject>Ribosomes - metabolism</subject><subject>RNA</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA, Transfer, Amino Acyl - genetics</subject><subject>RNA, Transfer, Amino Acyl - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1rGzEQhkVpaJy0555aFnrJZZORtKuPS6GYfkEgl_QstLJky-xKW0kO9b-vHKdJ21NAIDTzzDszehF6i-ESA6dXc9D5EjNMoe8xpi_QAoPELeskvEQLAMJb0ZHuFJ3lvAUA2Qt4hU4J5xLX7AJNyxiK_VXaPFvjnTeNDxs_-OJjaKJrStIhj_r-Oeyb5IeY46THRodSsVi8yU3RaW2LD-umbGwz27n41X481jqbdLaNsbVNeo1OnB6zffNwn6MfXz7fLr-11zdfvy8_Xbem70hpKbFkAMqExB03lPWMuxWVmDvBOQO96m3PwNIal8wQhsmgB-kYYCa5cJqeo49H3Xk3THZ1aJ70qObkJ532Kmqv_s0Ev1HreKd6EEzKrgpcPAik-HNnc1GTz8aOow427rLCghNBGOH4GWidU3T1VPTDf-g27lKoP3FPyboJyEpdHSmTYs7Juse5MaiD6-rgunpyvVa8_3vdR_6PzRV4dwS2ucT0lGcdJwRz-hu5TbPI</recordid><startdate>20161025</startdate><enddate>20161025</enddate><creator>Marks, James</creator><creator>Kannan, Krishna</creator><creator>Roncase, Emily J.</creator><creator>Klepacki, Dorota</creator><creator>Kefi, Amira</creator><creator>Orelle, Cédric</creator><creator>Vázquez-Laslop, Nora</creator><creator>Mankin, Alexander S.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161025</creationdate><title>Context-specific inhibition of translation by ribosomal antibiotics targeting the peptidyl transferase center</title><author>Marks, James ; Kannan, Krishna ; Roncase, Emily J. ; Klepacki, Dorota ; Kefi, Amira ; Orelle, Cédric ; Vázquez-Laslop, Nora ; Mankin, Alexander S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-32e2b03689147c36567fd3917f87760ad5e560e356796c2612bab9f6016978fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino Acids - genetics</topic><topic>Amino Acids - metabolism</topic><topic>Antibiotics</topic><topic>Binding Sites</topic><topic>Biological Sciences</topic><topic>Catalysis</topic><topic>Chloramphenicol - chemistry</topic><topic>Chloramphenicol - pharmacology</topic><topic>Escherichia coli - drug effects</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Linezolid - chemistry</topic><topic>Linezolid - pharmacology</topic><topic>Models, Molecular</topic><topic>Peptides</topic><topic>Peptidyl Transferases - antagonists &amp; inhibitors</topic><topic>Peptidyl Transferases - genetics</topic><topic>Peptidyl Transferases - metabolism</topic><topic>Protein Binding</topic><topic>Protein Biosynthesis</topic><topic>Protein synthesis</topic><topic>Ribonucleic acid</topic><topic>Ribosomes - drug effects</topic><topic>Ribosomes - genetics</topic><topic>Ribosomes - metabolism</topic><topic>RNA</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA, Transfer, Amino Acyl - genetics</topic><topic>RNA, Transfer, Amino Acyl - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marks, James</creatorcontrib><creatorcontrib>Kannan, Krishna</creatorcontrib><creatorcontrib>Roncase, Emily J.</creatorcontrib><creatorcontrib>Klepacki, Dorota</creatorcontrib><creatorcontrib>Kefi, Amira</creatorcontrib><creatorcontrib>Orelle, Cédric</creatorcontrib><creatorcontrib>Vázquez-Laslop, Nora</creatorcontrib><creatorcontrib>Mankin, Alexander S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marks, James</au><au>Kannan, Krishna</au><au>Roncase, Emily J.</au><au>Klepacki, Dorota</au><au>Kefi, Amira</au><au>Orelle, Cédric</au><au>Vázquez-Laslop, Nora</au><au>Mankin, Alexander S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Context-specific inhibition of translation by ribosomal antibiotics targeting the peptidyl transferase center</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-10-25</date><risdate>2016</risdate><volume>113</volume><issue>43</issue><spage>12150</spage><epage>12155</epage><pages>12150-12155</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The first broad-spectrum antibiotic chloramphenicol and one of the newest clinically important antibacterials, linezolid, inhibit protein synthesis by targeting the peptidyl transferase center of the bacterial ribosome. Because antibiotic binding should prevent the placement of aminoacyl-tRNA in the catalytic site, it is commonly assumed that these drugs are universal inhibitors of peptidyl transfer and should readily block the formation of every peptide bond. However, our in vitro experiments showed that chloramphenicol and linezolid stall ribosomes at specific mRNA locations. Treatment of bacterial cells with high concentrations of these antibiotics leads to preferential arrest of translation at defined sites, resulting in redistribution of the ribosomes on mRNA. Antibiotic-mediated inhibition of protein synthesis is most efficient when the nascent peptide in the ribosome carries an alanine residue and, to a lesser extent, serine or threonine in its penultimate position. In contrast, the inhibitory action of the drugs is counteracted by glycine when it is either at the nascent-chain C terminus or at the incoming aminoacyl-tRNA. The context-specific action of chloramphenicol illuminates the operation of the mechanism of inducible resistance that relies on programmed drug-induced translation arrest. In addition, our findings expose the functional interplay between the nascent chain and the peptidyl transferase center.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>27791002</pmid><doi>10.1073/pnas.1613055113</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2016-10, Vol.113 (43), p.12150-12155
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5086994
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino Acids - genetics
Amino Acids - metabolism
Antibiotics
Binding Sites
Biological Sciences
Catalysis
Chloramphenicol - chemistry
Chloramphenicol - pharmacology
Escherichia coli - drug effects
Escherichia coli - genetics
Escherichia coli - metabolism
Linezolid - chemistry
Linezolid - pharmacology
Models, Molecular
Peptides
Peptidyl Transferases - antagonists & inhibitors
Peptidyl Transferases - genetics
Peptidyl Transferases - metabolism
Protein Binding
Protein Biosynthesis
Protein synthesis
Ribonucleic acid
Ribosomes - drug effects
Ribosomes - genetics
Ribosomes - metabolism
RNA
RNA, Messenger - genetics
RNA, Messenger - metabolism
RNA, Transfer, Amino Acyl - genetics
RNA, Transfer, Amino Acyl - metabolism
title Context-specific inhibition of translation by ribosomal antibiotics targeting the peptidyl transferase center
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T09%3A41%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Context-specific%20inhibition%20of%20translation%20by%20ribosomal%20antibiotics%20targeting%20the%20peptidyl%20transferase%20center&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Marks,%20James&rft.date=2016-10-25&rft.volume=113&rft.issue=43&rft.spage=12150&rft.epage=12155&rft.pages=12150-12155&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1613055113&rft_dat=%3Cjstor_pubme%3E26472217%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835926109&rft_id=info:pmid/27791002&rft_jstor_id=26472217&rfr_iscdi=true