Context-specific inhibition of translation by ribosomal antibiotics targeting the peptidyl transferase center
The first broad-spectrum antibiotic chloramphenicol and one of the newest clinically important antibacterials, linezolid, inhibit protein synthesis by targeting the peptidyl transferase center of the bacterial ribosome. Because antibiotic binding should prevent the placement of aminoacyl-tRNA in the...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2016-10, Vol.113 (43), p.12150-12155 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12155 |
---|---|
container_issue | 43 |
container_start_page | 12150 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 113 |
creator | Marks, James Kannan, Krishna Roncase, Emily J. Klepacki, Dorota Kefi, Amira Orelle, Cédric Vázquez-Laslop, Nora Mankin, Alexander S. |
description | The first broad-spectrum antibiotic chloramphenicol and one of the newest clinically important antibacterials, linezolid, inhibit protein synthesis by targeting the peptidyl transferase center of the bacterial ribosome. Because antibiotic binding should prevent the placement of aminoacyl-tRNA in the catalytic site, it is commonly assumed that these drugs are universal inhibitors of peptidyl transfer and should readily block the formation of every peptide bond. However, our in vitro experiments showed that chloramphenicol and linezolid stall ribosomes at specific mRNA locations. Treatment of bacterial cells with high concentrations of these antibiotics leads to preferential arrest of translation at defined sites, resulting in redistribution of the ribosomes on mRNA. Antibiotic-mediated inhibition of protein synthesis is most efficient when the nascent peptide in the ribosome carries an alanine residue and, to a lesser extent, serine or threonine in its penultimate position. In contrast, the inhibitory action of the drugs is counteracted by glycine when it is either at the nascent-chain C terminus or at the incoming aminoacyl-tRNA. The context-specific action of chloramphenicol illuminates the operation of the mechanism of inducible resistance that relies on programmed drug-induced translation arrest. In addition, our findings expose the functional interplay between the nascent chain and the peptidyl transferase center. |
doi_str_mv | 10.1073/pnas.1613055113 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5086994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26472217</jstor_id><sourcerecordid>26472217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-32e2b03689147c36567fd3917f87760ad5e560e356796c2612bab9f6016978fa3</originalsourceid><addsrcrecordid>eNqNkU1rGzEQhkVpaJy0555aFnrJZZORtKuPS6GYfkEgl_QstLJky-xKW0kO9b-vHKdJ21NAIDTzzDszehF6i-ESA6dXc9D5EjNMoe8xpi_QAoPELeskvEQLAMJb0ZHuFJ3lvAUA2Qt4hU4J5xLX7AJNyxiK_VXaPFvjnTeNDxs_-OJjaKJrStIhj_r-Oeyb5IeY46THRodSsVi8yU3RaW2LD-umbGwz27n41X481jqbdLaNsbVNeo1OnB6zffNwn6MfXz7fLr-11zdfvy8_Xbem70hpKbFkAMqExB03lPWMuxWVmDvBOQO96m3PwNIal8wQhsmgB-kYYCa5cJqeo49H3Xk3THZ1aJ70qObkJ532Kmqv_s0Ev1HreKd6EEzKrgpcPAik-HNnc1GTz8aOow427rLCghNBGOH4GWidU3T1VPTDf-g27lKoP3FPyboJyEpdHSmTYs7Juse5MaiD6-rgunpyvVa8_3vdR_6PzRV4dwS2ucT0lGcdJwRz-hu5TbPI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835926109</pqid></control><display><type>article</type><title>Context-specific inhibition of translation by ribosomal antibiotics targeting the peptidyl transferase center</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Marks, James ; Kannan, Krishna ; Roncase, Emily J. ; Klepacki, Dorota ; Kefi, Amira ; Orelle, Cédric ; Vázquez-Laslop, Nora ; Mankin, Alexander S.</creator><creatorcontrib>Marks, James ; Kannan, Krishna ; Roncase, Emily J. ; Klepacki, Dorota ; Kefi, Amira ; Orelle, Cédric ; Vázquez-Laslop, Nora ; Mankin, Alexander S.</creatorcontrib><description>The first broad-spectrum antibiotic chloramphenicol and one of the newest clinically important antibacterials, linezolid, inhibit protein synthesis by targeting the peptidyl transferase center of the bacterial ribosome. Because antibiotic binding should prevent the placement of aminoacyl-tRNA in the catalytic site, it is commonly assumed that these drugs are universal inhibitors of peptidyl transfer and should readily block the formation of every peptide bond. However, our in vitro experiments showed that chloramphenicol and linezolid stall ribosomes at specific mRNA locations. Treatment of bacterial cells with high concentrations of these antibiotics leads to preferential arrest of translation at defined sites, resulting in redistribution of the ribosomes on mRNA. Antibiotic-mediated inhibition of protein synthesis is most efficient when the nascent peptide in the ribosome carries an alanine residue and, to a lesser extent, serine or threonine in its penultimate position. In contrast, the inhibitory action of the drugs is counteracted by glycine when it is either at the nascent-chain C terminus or at the incoming aminoacyl-tRNA. The context-specific action of chloramphenicol illuminates the operation of the mechanism of inducible resistance that relies on programmed drug-induced translation arrest. In addition, our findings expose the functional interplay between the nascent chain and the peptidyl transferase center.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1613055113</identifier><identifier>PMID: 27791002</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acids - genetics ; Amino Acids - metabolism ; Antibiotics ; Binding Sites ; Biological Sciences ; Catalysis ; Chloramphenicol - chemistry ; Chloramphenicol - pharmacology ; Escherichia coli - drug effects ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Linezolid - chemistry ; Linezolid - pharmacology ; Models, Molecular ; Peptides ; Peptidyl Transferases - antagonists & inhibitors ; Peptidyl Transferases - genetics ; Peptidyl Transferases - metabolism ; Protein Binding ; Protein Biosynthesis ; Protein synthesis ; Ribonucleic acid ; Ribosomes - drug effects ; Ribosomes - genetics ; Ribosomes - metabolism ; RNA ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; RNA, Transfer, Amino Acyl - genetics ; RNA, Transfer, Amino Acyl - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-10, Vol.113 (43), p.12150-12155</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Oct 25, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-32e2b03689147c36567fd3917f87760ad5e560e356796c2612bab9f6016978fa3</citedby><cites>FETCH-LOGICAL-c542t-32e2b03689147c36567fd3917f87760ad5e560e356796c2612bab9f6016978fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26472217$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26472217$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27791002$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marks, James</creatorcontrib><creatorcontrib>Kannan, Krishna</creatorcontrib><creatorcontrib>Roncase, Emily J.</creatorcontrib><creatorcontrib>Klepacki, Dorota</creatorcontrib><creatorcontrib>Kefi, Amira</creatorcontrib><creatorcontrib>Orelle, Cédric</creatorcontrib><creatorcontrib>Vázquez-Laslop, Nora</creatorcontrib><creatorcontrib>Mankin, Alexander S.</creatorcontrib><title>Context-specific inhibition of translation by ribosomal antibiotics targeting the peptidyl transferase center</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The first broad-spectrum antibiotic chloramphenicol and one of the newest clinically important antibacterials, linezolid, inhibit protein synthesis by targeting the peptidyl transferase center of the bacterial ribosome. Because antibiotic binding should prevent the placement of aminoacyl-tRNA in the catalytic site, it is commonly assumed that these drugs are universal inhibitors of peptidyl transfer and should readily block the formation of every peptide bond. However, our in vitro experiments showed that chloramphenicol and linezolid stall ribosomes at specific mRNA locations. Treatment of bacterial cells with high concentrations of these antibiotics leads to preferential arrest of translation at defined sites, resulting in redistribution of the ribosomes on mRNA. Antibiotic-mediated inhibition of protein synthesis is most efficient when the nascent peptide in the ribosome carries an alanine residue and, to a lesser extent, serine or threonine in its penultimate position. In contrast, the inhibitory action of the drugs is counteracted by glycine when it is either at the nascent-chain C terminus or at the incoming aminoacyl-tRNA. The context-specific action of chloramphenicol illuminates the operation of the mechanism of inducible resistance that relies on programmed drug-induced translation arrest. In addition, our findings expose the functional interplay between the nascent chain and the peptidyl transferase center.</description><subject>Amino Acids - genetics</subject><subject>Amino Acids - metabolism</subject><subject>Antibiotics</subject><subject>Binding Sites</subject><subject>Biological Sciences</subject><subject>Catalysis</subject><subject>Chloramphenicol - chemistry</subject><subject>Chloramphenicol - pharmacology</subject><subject>Escherichia coli - drug effects</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Linezolid - chemistry</subject><subject>Linezolid - pharmacology</subject><subject>Models, Molecular</subject><subject>Peptides</subject><subject>Peptidyl Transferases - antagonists & inhibitors</subject><subject>Peptidyl Transferases - genetics</subject><subject>Peptidyl Transferases - metabolism</subject><subject>Protein Binding</subject><subject>Protein Biosynthesis</subject><subject>Protein synthesis</subject><subject>Ribonucleic acid</subject><subject>Ribosomes - drug effects</subject><subject>Ribosomes - genetics</subject><subject>Ribosomes - metabolism</subject><subject>RNA</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA, Transfer, Amino Acyl - genetics</subject><subject>RNA, Transfer, Amino Acyl - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1rGzEQhkVpaJy0555aFnrJZZORtKuPS6GYfkEgl_QstLJky-xKW0kO9b-vHKdJ21NAIDTzzDszehF6i-ESA6dXc9D5EjNMoe8xpi_QAoPELeskvEQLAMJb0ZHuFJ3lvAUA2Qt4hU4J5xLX7AJNyxiK_VXaPFvjnTeNDxs_-OJjaKJrStIhj_r-Oeyb5IeY46THRodSsVi8yU3RaW2LD-umbGwz27n41X481jqbdLaNsbVNeo1OnB6zffNwn6MfXz7fLr-11zdfvy8_Xbem70hpKbFkAMqExB03lPWMuxWVmDvBOQO96m3PwNIal8wQhsmgB-kYYCa5cJqeo49H3Xk3THZ1aJ70qObkJ532Kmqv_s0Ev1HreKd6EEzKrgpcPAik-HNnc1GTz8aOow427rLCghNBGOH4GWidU3T1VPTDf-g27lKoP3FPyboJyEpdHSmTYs7Juse5MaiD6-rgunpyvVa8_3vdR_6PzRV4dwS2ucT0lGcdJwRz-hu5TbPI</recordid><startdate>20161025</startdate><enddate>20161025</enddate><creator>Marks, James</creator><creator>Kannan, Krishna</creator><creator>Roncase, Emily J.</creator><creator>Klepacki, Dorota</creator><creator>Kefi, Amira</creator><creator>Orelle, Cédric</creator><creator>Vázquez-Laslop, Nora</creator><creator>Mankin, Alexander S.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161025</creationdate><title>Context-specific inhibition of translation by ribosomal antibiotics targeting the peptidyl transferase center</title><author>Marks, James ; Kannan, Krishna ; Roncase, Emily J. ; Klepacki, Dorota ; Kefi, Amira ; Orelle, Cédric ; Vázquez-Laslop, Nora ; Mankin, Alexander S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-32e2b03689147c36567fd3917f87760ad5e560e356796c2612bab9f6016978fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino Acids - genetics</topic><topic>Amino Acids - metabolism</topic><topic>Antibiotics</topic><topic>Binding Sites</topic><topic>Biological Sciences</topic><topic>Catalysis</topic><topic>Chloramphenicol - chemistry</topic><topic>Chloramphenicol - pharmacology</topic><topic>Escherichia coli - drug effects</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Linezolid - chemistry</topic><topic>Linezolid - pharmacology</topic><topic>Models, Molecular</topic><topic>Peptides</topic><topic>Peptidyl Transferases - antagonists & inhibitors</topic><topic>Peptidyl Transferases - genetics</topic><topic>Peptidyl Transferases - metabolism</topic><topic>Protein Binding</topic><topic>Protein Biosynthesis</topic><topic>Protein synthesis</topic><topic>Ribonucleic acid</topic><topic>Ribosomes - drug effects</topic><topic>Ribosomes - genetics</topic><topic>Ribosomes - metabolism</topic><topic>RNA</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA, Transfer, Amino Acyl - genetics</topic><topic>RNA, Transfer, Amino Acyl - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marks, James</creatorcontrib><creatorcontrib>Kannan, Krishna</creatorcontrib><creatorcontrib>Roncase, Emily J.</creatorcontrib><creatorcontrib>Klepacki, Dorota</creatorcontrib><creatorcontrib>Kefi, Amira</creatorcontrib><creatorcontrib>Orelle, Cédric</creatorcontrib><creatorcontrib>Vázquez-Laslop, Nora</creatorcontrib><creatorcontrib>Mankin, Alexander S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marks, James</au><au>Kannan, Krishna</au><au>Roncase, Emily J.</au><au>Klepacki, Dorota</au><au>Kefi, Amira</au><au>Orelle, Cédric</au><au>Vázquez-Laslop, Nora</au><au>Mankin, Alexander S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Context-specific inhibition of translation by ribosomal antibiotics targeting the peptidyl transferase center</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-10-25</date><risdate>2016</risdate><volume>113</volume><issue>43</issue><spage>12150</spage><epage>12155</epage><pages>12150-12155</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The first broad-spectrum antibiotic chloramphenicol and one of the newest clinically important antibacterials, linezolid, inhibit protein synthesis by targeting the peptidyl transferase center of the bacterial ribosome. Because antibiotic binding should prevent the placement of aminoacyl-tRNA in the catalytic site, it is commonly assumed that these drugs are universal inhibitors of peptidyl transfer and should readily block the formation of every peptide bond. However, our in vitro experiments showed that chloramphenicol and linezolid stall ribosomes at specific mRNA locations. Treatment of bacterial cells with high concentrations of these antibiotics leads to preferential arrest of translation at defined sites, resulting in redistribution of the ribosomes on mRNA. Antibiotic-mediated inhibition of protein synthesis is most efficient when the nascent peptide in the ribosome carries an alanine residue and, to a lesser extent, serine or threonine in its penultimate position. In contrast, the inhibitory action of the drugs is counteracted by glycine when it is either at the nascent-chain C terminus or at the incoming aminoacyl-tRNA. The context-specific action of chloramphenicol illuminates the operation of the mechanism of inducible resistance that relies on programmed drug-induced translation arrest. In addition, our findings expose the functional interplay between the nascent chain and the peptidyl transferase center.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>27791002</pmid><doi>10.1073/pnas.1613055113</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2016-10, Vol.113 (43), p.12150-12155 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5086994 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amino Acids - genetics Amino Acids - metabolism Antibiotics Binding Sites Biological Sciences Catalysis Chloramphenicol - chemistry Chloramphenicol - pharmacology Escherichia coli - drug effects Escherichia coli - genetics Escherichia coli - metabolism Linezolid - chemistry Linezolid - pharmacology Models, Molecular Peptides Peptidyl Transferases - antagonists & inhibitors Peptidyl Transferases - genetics Peptidyl Transferases - metabolism Protein Binding Protein Biosynthesis Protein synthesis Ribonucleic acid Ribosomes - drug effects Ribosomes - genetics Ribosomes - metabolism RNA RNA, Messenger - genetics RNA, Messenger - metabolism RNA, Transfer, Amino Acyl - genetics RNA, Transfer, Amino Acyl - metabolism |
title | Context-specific inhibition of translation by ribosomal antibiotics targeting the peptidyl transferase center |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T09%3A41%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Context-specific%20inhibition%20of%20translation%20by%20ribosomal%20antibiotics%20targeting%20the%20peptidyl%20transferase%20center&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Marks,%20James&rft.date=2016-10-25&rft.volume=113&rft.issue=43&rft.spage=12150&rft.epage=12155&rft.pages=12150-12155&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1613055113&rft_dat=%3Cjstor_pubme%3E26472217%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835926109&rft_id=info:pmid/27791002&rft_jstor_id=26472217&rfr_iscdi=true |