RNA assemblages orchestrate complex cellular processes
Eukaryotic mRNAs are monocistronic, and therefore mechanisms exist that coordinate the synthesis of multiprotein complexes in order to obtain proper stoichiometry at the appropriate intracellular locations. RNA‐binding proteins containing low‐complexity sequences are prone to generate liquid droplet...
Gespeichert in:
Veröffentlicht in: | BioEssays 2016-07, Vol.38 (7), p.674-681 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 681 |
---|---|
container_issue | 7 |
container_start_page | 674 |
container_title | BioEssays |
container_volume | 38 |
creator | Nielsen, Finn Cilius Hansen, Heidi Theil Christiansen, Jan |
description | Eukaryotic mRNAs are monocistronic, and therefore mechanisms exist that coordinate the synthesis of multiprotein complexes in order to obtain proper stoichiometry at the appropriate intracellular locations. RNA‐binding proteins containing low‐complexity sequences are prone to generate liquid droplets via liquid‐liquid phase separation, and in this way create cytoplasmic assemblages of functionally related mRNAs. In a recent iCLIP study, we showed that the Drosophila RNA‐binding protein Imp, which exhibits a C‐terminal low‐complexity sequence, increases the formation of F‐actin by binding to 3′ untranslated regions of mRNAs encoding components participating in F‐actin biogenesis. We hypothesize that phase transition is a mechanism the cell employs to increase the local mRNA concentration considerably, and in this way synchronize protein production in cytoplasmic territories, as discussed in the present review.
RNA‐binding proteins containing low‐complexity sequences are prone to generate cytoplasmic assemblages of functionally related mRNAs within liquid droplets. Such a partitioning mechanism coordinates local post‐transcriptional regulation and ensures proximity of synthesized proteins in response to environmental cues, as illustrated for F‐actin biogenesis during cellular migration. |
doi_str_mv | 10.1002/bies.201500175 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5084767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4095963141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c7085-fc0bfffd5cd9922bcd139228075605a7bc4ff024210e42927a91cf398d46fd2d3</originalsourceid><addsrcrecordid>eNqNkb1vFDEQxS1ERI5AS4lWoqHZYzzrzwYpRCFEOoVvKC2v10427J4P-xaS_x6fLjkFmlBNMb_37DePkGcU5hQAX7W9z3MEygGo5A_IjHKkNVVSPSQzQMFrjUzuk8c5XwKAFsgekX2UVCKimBHx6eywsjn7sR3suc9VTO7C53Wya1-5OK4Gf1U5PwzTYFO1StH5AucnZC_YIfunN_OAfH17_OXoXb14f3J6dLionQTF6-CgDSF03HVaI7auo02ZCiQXwK1sHQsBkCEFz1CjtJq60GjVMRE67JoD8nrru5ra0XfOL8vPBrNK_WjTtYm2N39vlv2FOY-_DAfFpJDF4OWNQYo_pxLMjH3e5LFLH6dsqEJeXtZc_AdKNWWAjboflSUuCKZ1QV_8g17GKS3L0TaUElQ3mhZqvqVcijknH3YRKZhN0WZTtNkVXQTP7x5mh982WwC9BX73g7--x868OT3-fNe83mr7vPZXO61NP0w5acG_n50YLRYfBXz4ZhbNH6dLwvc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1798619391</pqid></control><display><type>article</type><title>RNA assemblages orchestrate complex cellular processes</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Nielsen, Finn Cilius ; Hansen, Heidi Theil ; Christiansen, Jan</creator><creatorcontrib>Nielsen, Finn Cilius ; Hansen, Heidi Theil ; Christiansen, Jan</creatorcontrib><description>Eukaryotic mRNAs are monocistronic, and therefore mechanisms exist that coordinate the synthesis of multiprotein complexes in order to obtain proper stoichiometry at the appropriate intracellular locations. RNA‐binding proteins containing low‐complexity sequences are prone to generate liquid droplets via liquid‐liquid phase separation, and in this way create cytoplasmic assemblages of functionally related mRNAs. In a recent iCLIP study, we showed that the Drosophila RNA‐binding protein Imp, which exhibits a C‐terminal low‐complexity sequence, increases the formation of F‐actin by binding to 3′ untranslated regions of mRNAs encoding components participating in F‐actin biogenesis. We hypothesize that phase transition is a mechanism the cell employs to increase the local mRNA concentration considerably, and in this way synchronize protein production in cytoplasmic territories, as discussed in the present review.
RNA‐binding proteins containing low‐complexity sequences are prone to generate cytoplasmic assemblages of functionally related mRNAs within liquid droplets. Such a partitioning mechanism coordinates local post‐transcriptional regulation and ensures proximity of synthesized proteins in response to environmental cues, as illustrated for F‐actin biogenesis during cellular migration.</description><identifier>ISSN: 0265-9247</identifier><identifier>EISSN: 1521-1878</identifier><identifier>DOI: 10.1002/bies.201500175</identifier><identifier>PMID: 27172226</identifier><identifier>CODEN: BIOEEJ</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>actin ; Animals ; biogenesis ; droplets ; Drosophila ; Drosophila - genetics ; Drosophila - metabolism ; Humans ; liquid droplet ; low-complexity sequence ; messenger RNA ; multiprotein complexes ; phase transition ; Phase transitions ; post-transcriptional RNA regulon ; Prospects & Overviews ; Ribonucleoproteins - metabolism ; RNA assemblage ; RNA Processing, Post-Transcriptional ; RNA, Messenger - metabolism ; RNA-binding protein ; RNA-binding proteins ; RNA-Binding Proteins - metabolism ; RNP granule ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; separation ; stoichiometry</subject><ispartof>BioEssays, 2016-07, Vol.38 (7), p.674-681</ispartof><rights>2016 The Authors BioEssays Published by WILEY Periodicals, Inc.</rights><rights>2016 WILEY Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c7085-fc0bfffd5cd9922bcd139228075605a7bc4ff024210e42927a91cf398d46fd2d3</citedby><cites>FETCH-LOGICAL-c7085-fc0bfffd5cd9922bcd139228075605a7bc4ff024210e42927a91cf398d46fd2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbies.201500175$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbies.201500175$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27172226$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nielsen, Finn Cilius</creatorcontrib><creatorcontrib>Hansen, Heidi Theil</creatorcontrib><creatorcontrib>Christiansen, Jan</creatorcontrib><title>RNA assemblages orchestrate complex cellular processes</title><title>BioEssays</title><addtitle>BioEssays</addtitle><description>Eukaryotic mRNAs are monocistronic, and therefore mechanisms exist that coordinate the synthesis of multiprotein complexes in order to obtain proper stoichiometry at the appropriate intracellular locations. RNA‐binding proteins containing low‐complexity sequences are prone to generate liquid droplets via liquid‐liquid phase separation, and in this way create cytoplasmic assemblages of functionally related mRNAs. In a recent iCLIP study, we showed that the Drosophila RNA‐binding protein Imp, which exhibits a C‐terminal low‐complexity sequence, increases the formation of F‐actin by binding to 3′ untranslated regions of mRNAs encoding components participating in F‐actin biogenesis. We hypothesize that phase transition is a mechanism the cell employs to increase the local mRNA concentration considerably, and in this way synchronize protein production in cytoplasmic territories, as discussed in the present review.
RNA‐binding proteins containing low‐complexity sequences are prone to generate cytoplasmic assemblages of functionally related mRNAs within liquid droplets. Such a partitioning mechanism coordinates local post‐transcriptional regulation and ensures proximity of synthesized proteins in response to environmental cues, as illustrated for F‐actin biogenesis during cellular migration.</description><subject>actin</subject><subject>Animals</subject><subject>biogenesis</subject><subject>droplets</subject><subject>Drosophila</subject><subject>Drosophila - genetics</subject><subject>Drosophila - metabolism</subject><subject>Humans</subject><subject>liquid droplet</subject><subject>low-complexity sequence</subject><subject>messenger RNA</subject><subject>multiprotein complexes</subject><subject>phase transition</subject><subject>Phase transitions</subject><subject>post-transcriptional RNA regulon</subject><subject>Prospects & Overviews</subject><subject>Ribonucleoproteins - metabolism</subject><subject>RNA assemblage</subject><subject>RNA Processing, Post-Transcriptional</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA-binding protein</subject><subject>RNA-binding proteins</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>RNP granule</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>separation</subject><subject>stoichiometry</subject><issn>0265-9247</issn><issn>1521-1878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqNkb1vFDEQxS1ERI5AS4lWoqHZYzzrzwYpRCFEOoVvKC2v10427J4P-xaS_x6fLjkFmlBNMb_37DePkGcU5hQAX7W9z3MEygGo5A_IjHKkNVVSPSQzQMFrjUzuk8c5XwKAFsgekX2UVCKimBHx6eywsjn7sR3suc9VTO7C53Wya1-5OK4Gf1U5PwzTYFO1StH5AucnZC_YIfunN_OAfH17_OXoXb14f3J6dLionQTF6-CgDSF03HVaI7auo02ZCiQXwK1sHQsBkCEFz1CjtJq60GjVMRE67JoD8nrru5ra0XfOL8vPBrNK_WjTtYm2N39vlv2FOY-_DAfFpJDF4OWNQYo_pxLMjH3e5LFLH6dsqEJeXtZc_AdKNWWAjboflSUuCKZ1QV_8g17GKS3L0TaUElQ3mhZqvqVcijknH3YRKZhN0WZTtNkVXQTP7x5mh982WwC9BX73g7--x868OT3-fNe83mr7vPZXO61NP0w5acG_n50YLRYfBXz4ZhbNH6dLwvc</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Nielsen, Finn Cilius</creator><creator>Hansen, Heidi Theil</creator><creator>Christiansen, Jan</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>201607</creationdate><title>RNA assemblages orchestrate complex cellular processes</title><author>Nielsen, Finn Cilius ; Hansen, Heidi Theil ; Christiansen, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c7085-fc0bfffd5cd9922bcd139228075605a7bc4ff024210e42927a91cf398d46fd2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>actin</topic><topic>Animals</topic><topic>biogenesis</topic><topic>droplets</topic><topic>Drosophila</topic><topic>Drosophila - genetics</topic><topic>Drosophila - metabolism</topic><topic>Humans</topic><topic>liquid droplet</topic><topic>low-complexity sequence</topic><topic>messenger RNA</topic><topic>multiprotein complexes</topic><topic>phase transition</topic><topic>Phase transitions</topic><topic>post-transcriptional RNA regulon</topic><topic>Prospects & Overviews</topic><topic>Ribonucleoproteins - metabolism</topic><topic>RNA assemblage</topic><topic>RNA Processing, Post-Transcriptional</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA-binding protein</topic><topic>RNA-binding proteins</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>RNP granule</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>separation</topic><topic>stoichiometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nielsen, Finn Cilius</creatorcontrib><creatorcontrib>Hansen, Heidi Theil</creatorcontrib><creatorcontrib>Christiansen, Jan</creatorcontrib><collection>Istex</collection><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioEssays</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nielsen, Finn Cilius</au><au>Hansen, Heidi Theil</au><au>Christiansen, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RNA assemblages orchestrate complex cellular processes</atitle><jtitle>BioEssays</jtitle><addtitle>BioEssays</addtitle><date>2016-07</date><risdate>2016</risdate><volume>38</volume><issue>7</issue><spage>674</spage><epage>681</epage><pages>674-681</pages><issn>0265-9247</issn><eissn>1521-1878</eissn><coden>BIOEEJ</coden><abstract>Eukaryotic mRNAs are monocistronic, and therefore mechanisms exist that coordinate the synthesis of multiprotein complexes in order to obtain proper stoichiometry at the appropriate intracellular locations. RNA‐binding proteins containing low‐complexity sequences are prone to generate liquid droplets via liquid‐liquid phase separation, and in this way create cytoplasmic assemblages of functionally related mRNAs. In a recent iCLIP study, we showed that the Drosophila RNA‐binding protein Imp, which exhibits a C‐terminal low‐complexity sequence, increases the formation of F‐actin by binding to 3′ untranslated regions of mRNAs encoding components participating in F‐actin biogenesis. We hypothesize that phase transition is a mechanism the cell employs to increase the local mRNA concentration considerably, and in this way synchronize protein production in cytoplasmic territories, as discussed in the present review.
RNA‐binding proteins containing low‐complexity sequences are prone to generate cytoplasmic assemblages of functionally related mRNAs within liquid droplets. Such a partitioning mechanism coordinates local post‐transcriptional regulation and ensures proximity of synthesized proteins in response to environmental cues, as illustrated for F‐actin biogenesis during cellular migration.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>27172226</pmid><doi>10.1002/bies.201500175</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0265-9247 |
ispartof | BioEssays, 2016-07, Vol.38 (7), p.674-681 |
issn | 0265-9247 1521-1878 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5084767 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | actin Animals biogenesis droplets Drosophila Drosophila - genetics Drosophila - metabolism Humans liquid droplet low-complexity sequence messenger RNA multiprotein complexes phase transition Phase transitions post-transcriptional RNA regulon Prospects & Overviews Ribonucleoproteins - metabolism RNA assemblage RNA Processing, Post-Transcriptional RNA, Messenger - metabolism RNA-binding protein RNA-binding proteins RNA-Binding Proteins - metabolism RNP granule Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism separation stoichiometry |
title | RNA assemblages orchestrate complex cellular processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A20%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RNA%20assemblages%20orchestrate%20complex%20cellular%20processes&rft.jtitle=BioEssays&rft.au=Nielsen,%20Finn%20Cilius&rft.date=2016-07&rft.volume=38&rft.issue=7&rft.spage=674&rft.epage=681&rft.pages=674-681&rft.issn=0265-9247&rft.eissn=1521-1878&rft.coden=BIOEEJ&rft_id=info:doi/10.1002/bies.201500175&rft_dat=%3Cproquest_pubme%3E4095963141%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1798619391&rft_id=info:pmid/27172226&rfr_iscdi=true |