RNA assemblages orchestrate complex cellular processes

Eukaryotic mRNAs are monocistronic, and therefore mechanisms exist that coordinate the synthesis of multiprotein complexes in order to obtain proper stoichiometry at the appropriate intracellular locations. RNA‐binding proteins containing low‐complexity sequences are prone to generate liquid droplet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioEssays 2016-07, Vol.38 (7), p.674-681
Hauptverfasser: Nielsen, Finn Cilius, Hansen, Heidi Theil, Christiansen, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 681
container_issue 7
container_start_page 674
container_title BioEssays
container_volume 38
creator Nielsen, Finn Cilius
Hansen, Heidi Theil
Christiansen, Jan
description Eukaryotic mRNAs are monocistronic, and therefore mechanisms exist that coordinate the synthesis of multiprotein complexes in order to obtain proper stoichiometry at the appropriate intracellular locations. RNA‐binding proteins containing low‐complexity sequences are prone to generate liquid droplets via liquid‐liquid phase separation, and in this way create cytoplasmic assemblages of functionally related mRNAs. In a recent iCLIP study, we showed that the Drosophila RNA‐binding protein Imp, which exhibits a C‐terminal low‐complexity sequence, increases the formation of F‐actin by binding to 3′ untranslated regions of mRNAs encoding components participating in F‐actin biogenesis. We hypothesize that phase transition is a mechanism the cell employs to increase the local mRNA concentration considerably, and in this way synchronize protein production in cytoplasmic territories, as discussed in the present review. RNA‐binding proteins containing low‐complexity sequences are prone to generate cytoplasmic assemblages of functionally related mRNAs within liquid droplets. Such a partitioning mechanism coordinates local post‐transcriptional regulation and ensures proximity of synthesized proteins in response to environmental cues, as illustrated for F‐actin biogenesis during cellular migration.
doi_str_mv 10.1002/bies.201500175
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5084767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4095963141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c7085-fc0bfffd5cd9922bcd139228075605a7bc4ff024210e42927a91cf398d46fd2d3</originalsourceid><addsrcrecordid>eNqNkb1vFDEQxS1ERI5AS4lWoqHZYzzrzwYpRCFEOoVvKC2v10427J4P-xaS_x6fLjkFmlBNMb_37DePkGcU5hQAX7W9z3MEygGo5A_IjHKkNVVSPSQzQMFrjUzuk8c5XwKAFsgekX2UVCKimBHx6eywsjn7sR3suc9VTO7C53Wya1-5OK4Gf1U5PwzTYFO1StH5AucnZC_YIfunN_OAfH17_OXoXb14f3J6dLionQTF6-CgDSF03HVaI7auo02ZCiQXwK1sHQsBkCEFz1CjtJq60GjVMRE67JoD8nrru5ra0XfOL8vPBrNK_WjTtYm2N39vlv2FOY-_DAfFpJDF4OWNQYo_pxLMjH3e5LFLH6dsqEJeXtZc_AdKNWWAjboflSUuCKZ1QV_8g17GKS3L0TaUElQ3mhZqvqVcijknH3YRKZhN0WZTtNkVXQTP7x5mh982WwC9BX73g7--x868OT3-fNe83mr7vPZXO61NP0w5acG_n50YLRYfBXz4ZhbNH6dLwvc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1798619391</pqid></control><display><type>article</type><title>RNA assemblages orchestrate complex cellular processes</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Nielsen, Finn Cilius ; Hansen, Heidi Theil ; Christiansen, Jan</creator><creatorcontrib>Nielsen, Finn Cilius ; Hansen, Heidi Theil ; Christiansen, Jan</creatorcontrib><description>Eukaryotic mRNAs are monocistronic, and therefore mechanisms exist that coordinate the synthesis of multiprotein complexes in order to obtain proper stoichiometry at the appropriate intracellular locations. RNA‐binding proteins containing low‐complexity sequences are prone to generate liquid droplets via liquid‐liquid phase separation, and in this way create cytoplasmic assemblages of functionally related mRNAs. In a recent iCLIP study, we showed that the Drosophila RNA‐binding protein Imp, which exhibits a C‐terminal low‐complexity sequence, increases the formation of F‐actin by binding to 3′ untranslated regions of mRNAs encoding components participating in F‐actin biogenesis. We hypothesize that phase transition is a mechanism the cell employs to increase the local mRNA concentration considerably, and in this way synchronize protein production in cytoplasmic territories, as discussed in the present review. RNA‐binding proteins containing low‐complexity sequences are prone to generate cytoplasmic assemblages of functionally related mRNAs within liquid droplets. Such a partitioning mechanism coordinates local post‐transcriptional regulation and ensures proximity of synthesized proteins in response to environmental cues, as illustrated for F‐actin biogenesis during cellular migration.</description><identifier>ISSN: 0265-9247</identifier><identifier>EISSN: 1521-1878</identifier><identifier>DOI: 10.1002/bies.201500175</identifier><identifier>PMID: 27172226</identifier><identifier>CODEN: BIOEEJ</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>actin ; Animals ; biogenesis ; droplets ; Drosophila ; Drosophila - genetics ; Drosophila - metabolism ; Humans ; liquid droplet ; low-complexity sequence ; messenger RNA ; multiprotein complexes ; phase transition ; Phase transitions ; post-transcriptional RNA regulon ; Prospects &amp; Overviews ; Ribonucleoproteins - metabolism ; RNA assemblage ; RNA Processing, Post-Transcriptional ; RNA, Messenger - metabolism ; RNA-binding protein ; RNA-binding proteins ; RNA-Binding Proteins - metabolism ; RNP granule ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; separation ; stoichiometry</subject><ispartof>BioEssays, 2016-07, Vol.38 (7), p.674-681</ispartof><rights>2016 The Authors BioEssays Published by WILEY Periodicals, Inc.</rights><rights>2016 WILEY Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c7085-fc0bfffd5cd9922bcd139228075605a7bc4ff024210e42927a91cf398d46fd2d3</citedby><cites>FETCH-LOGICAL-c7085-fc0bfffd5cd9922bcd139228075605a7bc4ff024210e42927a91cf398d46fd2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbies.201500175$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbies.201500175$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27172226$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nielsen, Finn Cilius</creatorcontrib><creatorcontrib>Hansen, Heidi Theil</creatorcontrib><creatorcontrib>Christiansen, Jan</creatorcontrib><title>RNA assemblages orchestrate complex cellular processes</title><title>BioEssays</title><addtitle>BioEssays</addtitle><description>Eukaryotic mRNAs are monocistronic, and therefore mechanisms exist that coordinate the synthesis of multiprotein complexes in order to obtain proper stoichiometry at the appropriate intracellular locations. RNA‐binding proteins containing low‐complexity sequences are prone to generate liquid droplets via liquid‐liquid phase separation, and in this way create cytoplasmic assemblages of functionally related mRNAs. In a recent iCLIP study, we showed that the Drosophila RNA‐binding protein Imp, which exhibits a C‐terminal low‐complexity sequence, increases the formation of F‐actin by binding to 3′ untranslated regions of mRNAs encoding components participating in F‐actin biogenesis. We hypothesize that phase transition is a mechanism the cell employs to increase the local mRNA concentration considerably, and in this way synchronize protein production in cytoplasmic territories, as discussed in the present review. RNA‐binding proteins containing low‐complexity sequences are prone to generate cytoplasmic assemblages of functionally related mRNAs within liquid droplets. Such a partitioning mechanism coordinates local post‐transcriptional regulation and ensures proximity of synthesized proteins in response to environmental cues, as illustrated for F‐actin biogenesis during cellular migration.</description><subject>actin</subject><subject>Animals</subject><subject>biogenesis</subject><subject>droplets</subject><subject>Drosophila</subject><subject>Drosophila - genetics</subject><subject>Drosophila - metabolism</subject><subject>Humans</subject><subject>liquid droplet</subject><subject>low-complexity sequence</subject><subject>messenger RNA</subject><subject>multiprotein complexes</subject><subject>phase transition</subject><subject>Phase transitions</subject><subject>post-transcriptional RNA regulon</subject><subject>Prospects &amp; Overviews</subject><subject>Ribonucleoproteins - metabolism</subject><subject>RNA assemblage</subject><subject>RNA Processing, Post-Transcriptional</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA-binding protein</subject><subject>RNA-binding proteins</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>RNP granule</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>separation</subject><subject>stoichiometry</subject><issn>0265-9247</issn><issn>1521-1878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqNkb1vFDEQxS1ERI5AS4lWoqHZYzzrzwYpRCFEOoVvKC2v10427J4P-xaS_x6fLjkFmlBNMb_37DePkGcU5hQAX7W9z3MEygGo5A_IjHKkNVVSPSQzQMFrjUzuk8c5XwKAFsgekX2UVCKimBHx6eywsjn7sR3suc9VTO7C53Wya1-5OK4Gf1U5PwzTYFO1StH5AucnZC_YIfunN_OAfH17_OXoXb14f3J6dLionQTF6-CgDSF03HVaI7auo02ZCiQXwK1sHQsBkCEFz1CjtJq60GjVMRE67JoD8nrru5ra0XfOL8vPBrNK_WjTtYm2N39vlv2FOY-_DAfFpJDF4OWNQYo_pxLMjH3e5LFLH6dsqEJeXtZc_AdKNWWAjboflSUuCKZ1QV_8g17GKS3L0TaUElQ3mhZqvqVcijknH3YRKZhN0WZTtNkVXQTP7x5mh982WwC9BX73g7--x868OT3-fNe83mr7vPZXO61NP0w5acG_n50YLRYfBXz4ZhbNH6dLwvc</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Nielsen, Finn Cilius</creator><creator>Hansen, Heidi Theil</creator><creator>Christiansen, Jan</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>201607</creationdate><title>RNA assemblages orchestrate complex cellular processes</title><author>Nielsen, Finn Cilius ; Hansen, Heidi Theil ; Christiansen, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c7085-fc0bfffd5cd9922bcd139228075605a7bc4ff024210e42927a91cf398d46fd2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>actin</topic><topic>Animals</topic><topic>biogenesis</topic><topic>droplets</topic><topic>Drosophila</topic><topic>Drosophila - genetics</topic><topic>Drosophila - metabolism</topic><topic>Humans</topic><topic>liquid droplet</topic><topic>low-complexity sequence</topic><topic>messenger RNA</topic><topic>multiprotein complexes</topic><topic>phase transition</topic><topic>Phase transitions</topic><topic>post-transcriptional RNA regulon</topic><topic>Prospects &amp; Overviews</topic><topic>Ribonucleoproteins - metabolism</topic><topic>RNA assemblage</topic><topic>RNA Processing, Post-Transcriptional</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA-binding protein</topic><topic>RNA-binding proteins</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>RNP granule</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>separation</topic><topic>stoichiometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nielsen, Finn Cilius</creatorcontrib><creatorcontrib>Hansen, Heidi Theil</creatorcontrib><creatorcontrib>Christiansen, Jan</creatorcontrib><collection>Istex</collection><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioEssays</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nielsen, Finn Cilius</au><au>Hansen, Heidi Theil</au><au>Christiansen, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RNA assemblages orchestrate complex cellular processes</atitle><jtitle>BioEssays</jtitle><addtitle>BioEssays</addtitle><date>2016-07</date><risdate>2016</risdate><volume>38</volume><issue>7</issue><spage>674</spage><epage>681</epage><pages>674-681</pages><issn>0265-9247</issn><eissn>1521-1878</eissn><coden>BIOEEJ</coden><abstract>Eukaryotic mRNAs are monocistronic, and therefore mechanisms exist that coordinate the synthesis of multiprotein complexes in order to obtain proper stoichiometry at the appropriate intracellular locations. RNA‐binding proteins containing low‐complexity sequences are prone to generate liquid droplets via liquid‐liquid phase separation, and in this way create cytoplasmic assemblages of functionally related mRNAs. In a recent iCLIP study, we showed that the Drosophila RNA‐binding protein Imp, which exhibits a C‐terminal low‐complexity sequence, increases the formation of F‐actin by binding to 3′ untranslated regions of mRNAs encoding components participating in F‐actin biogenesis. We hypothesize that phase transition is a mechanism the cell employs to increase the local mRNA concentration considerably, and in this way synchronize protein production in cytoplasmic territories, as discussed in the present review. RNA‐binding proteins containing low‐complexity sequences are prone to generate cytoplasmic assemblages of functionally related mRNAs within liquid droplets. Such a partitioning mechanism coordinates local post‐transcriptional regulation and ensures proximity of synthesized proteins in response to environmental cues, as illustrated for F‐actin biogenesis during cellular migration.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>27172226</pmid><doi>10.1002/bies.201500175</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0265-9247
ispartof BioEssays, 2016-07, Vol.38 (7), p.674-681
issn 0265-9247
1521-1878
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5084767
source MEDLINE; Wiley Online Library All Journals
subjects actin
Animals
biogenesis
droplets
Drosophila
Drosophila - genetics
Drosophila - metabolism
Humans
liquid droplet
low-complexity sequence
messenger RNA
multiprotein complexes
phase transition
Phase transitions
post-transcriptional RNA regulon
Prospects & Overviews
Ribonucleoproteins - metabolism
RNA assemblage
RNA Processing, Post-Transcriptional
RNA, Messenger - metabolism
RNA-binding protein
RNA-binding proteins
RNA-Binding Proteins - metabolism
RNP granule
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
separation
stoichiometry
title RNA assemblages orchestrate complex cellular processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A20%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RNA%20assemblages%20orchestrate%20complex%20cellular%20processes&rft.jtitle=BioEssays&rft.au=Nielsen,%20Finn%20Cilius&rft.date=2016-07&rft.volume=38&rft.issue=7&rft.spage=674&rft.epage=681&rft.pages=674-681&rft.issn=0265-9247&rft.eissn=1521-1878&rft.coden=BIOEEJ&rft_id=info:doi/10.1002/bies.201500175&rft_dat=%3Cproquest_pubme%3E4095963141%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1798619391&rft_id=info:pmid/27172226&rfr_iscdi=true