A computational biomarker of idiopathic generalized epilepsy from resting state EEG

Summary Epilepsy is one of the most common serious neurologic conditions. It is characterized by the tendency to have recurrent seizures, which arise against a backdrop of apparently normal brain activity. At present, clinical diagnosis relies on the following: (1) case history, which can be unrelia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Epilepsia (Copenhagen) 2016-10, Vol.57 (10), p.e200-e204
Hauptverfasser: Schmidt, Helmut, Woldman, Wessel, Goodfellow, Marc, Chowdhury, Fahmida A., Koutroumanidis, Michalis, Jewell, Sharon, Richardson, Mark P., Terry, John R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e204
container_issue 10
container_start_page e200
container_title Epilepsia (Copenhagen)
container_volume 57
creator Schmidt, Helmut
Woldman, Wessel
Goodfellow, Marc
Chowdhury, Fahmida A.
Koutroumanidis, Michalis
Jewell, Sharon
Richardson, Mark P.
Terry, John R.
description Summary Epilepsy is one of the most common serious neurologic conditions. It is characterized by the tendency to have recurrent seizures, which arise against a backdrop of apparently normal brain activity. At present, clinical diagnosis relies on the following: (1) case history, which can be unreliable; (2) observation of transient abnormal activity during electroencephalography (EEG), which may not be present during clinical evaluation; and (3) if diagnostic uncertainty occurs, undertaking prolonged monitoring in an attempt to observe EEG abnormalities, which is costly. Herein, we describe the discovery and validation of an epilepsy biomarker based on computational analysis of a short segment of resting‐state (interictal) EEG. Our method utilizes a computer model of dynamic networks, where the network is inferred from the extent of synchrony between EEG channels (functional networks) and the normalized power spectrum of the clinical data. We optimize model parameters using a leave‐one‐out classification on a dataset comprising 30 people with idiopathic generalized epilepsy (IGE) and 38 normal controls. Applying this scheme to all 68 subjects we find 100% specificity at 56.7% sensitivity, and 100% sensitivity at 65.8% specificity. We believe this biomarker could readily provide additional support to the diagnostic process.
doi_str_mv 10.1111/epi.13481
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5082517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4207561191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5831-47d320e0759c61af952812bc32f0c5d29b6cde4c867019c2696103e394e2ce113</originalsourceid><addsrcrecordid>eNp1kcFO3DAURa2qqExpF_0BZKmbdhHws2PH2SAhNFAkJJDari2P8zIYkji1k1bTr8d0AFEkvPHCR8f33UfIJ2AHkM8hjv4ARKnhDVmA5LoAUNVbsmAMRFFLzXbJ-5RuGGOVqsQ7sssryYBpsSDfj6kL_ThPdvJhsB1d-dDbeIuRhpb6xofRTtfe0TUOGG3n_2JD838djmlD2xh6GjFNfljTlB1Il8uzD2SntV3Cjw_3Hvl5uvxx8q24uDw7Pzm-KJzUAoqyagRnyCpZOwW2rXNy4CsneMucbHi9Uq7B0mlVMagdV7UCJlDUJXKHAGKPHG2947zqsXE4TDmhGaPPE2xMsN78_zL4a7MOv41kmkuosuDLgyCGX3Mew_Q-Oew6O2CYkwEtpJC1AJ7Rzy_QmzDHXNg9xZUus1Jl6uuWcjGkFLF9CgPM3K_K5OrMv1Vldv95-ifycTcZONwCf3Lbm9dNZnl1vlXeAa04nUo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826840826</pqid></control><display><type>article</type><title>A computational biomarker of idiopathic generalized epilepsy from resting state EEG</title><source>MEDLINE</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Schmidt, Helmut ; Woldman, Wessel ; Goodfellow, Marc ; Chowdhury, Fahmida A. ; Koutroumanidis, Michalis ; Jewell, Sharon ; Richardson, Mark P. ; Terry, John R.</creator><creatorcontrib>Schmidt, Helmut ; Woldman, Wessel ; Goodfellow, Marc ; Chowdhury, Fahmida A. ; Koutroumanidis, Michalis ; Jewell, Sharon ; Richardson, Mark P. ; Terry, John R.</creatorcontrib><description>Summary Epilepsy is one of the most common serious neurologic conditions. It is characterized by the tendency to have recurrent seizures, which arise against a backdrop of apparently normal brain activity. At present, clinical diagnosis relies on the following: (1) case history, which can be unreliable; (2) observation of transient abnormal activity during electroencephalography (EEG), which may not be present during clinical evaluation; and (3) if diagnostic uncertainty occurs, undertaking prolonged monitoring in an attempt to observe EEG abnormalities, which is costly. Herein, we describe the discovery and validation of an epilepsy biomarker based on computational analysis of a short segment of resting‐state (interictal) EEG. Our method utilizes a computer model of dynamic networks, where the network is inferred from the extent of synchrony between EEG channels (functional networks) and the normalized power spectrum of the clinical data. We optimize model parameters using a leave‐one‐out classification on a dataset comprising 30 people with idiopathic generalized epilepsy (IGE) and 38 normal controls. Applying this scheme to all 68 subjects we find 100% specificity at 56.7% sensitivity, and 100% sensitivity at 65.8% specificity. We believe this biomarker could readily provide additional support to the diagnostic process.</description><identifier>ISSN: 0013-9580</identifier><identifier>EISSN: 1528-1167</identifier><identifier>DOI: 10.1111/epi.13481</identifier><identifier>PMID: 27501083</identifier><identifier>CODEN: EPILAK</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Adolescent ; Adult ; Biomarker ; Biomarkers ; Brain Mapping ; Brain Waves - physiology ; Brief Communication ; Computational model ; Convulsions &amp; seizures ; Diagnosis ; Electroencephalography ; Electroencephalography - methods ; Electronic Data Processing ; Epilepsy ; Epilepsy, Generalized - physiopathology ; Female ; Humans ; IGE ; Male ; Middle Aged ; Rest ; Resting‐state EEG ; Spectrum Analysis ; Young Adult</subject><ispartof>Epilepsia (Copenhagen), 2016-10, Vol.57 (10), p.e200-e204</ispartof><rights>2016 The Authors. published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.</rights><rights>2016 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.</rights><rights>Copyright © 2016 International League Against Epilepsy</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5831-47d320e0759c61af952812bc32f0c5d29b6cde4c867019c2696103e394e2ce113</citedby><cites>FETCH-LOGICAL-c5831-47d320e0759c61af952812bc32f0c5d29b6cde4c867019c2696103e394e2ce113</cites><orcidid>0000-0002-7282-7280</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fepi.13481$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fepi.13481$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1416,1432,27922,27923,45572,45573,46407,46831</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27501083$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmidt, Helmut</creatorcontrib><creatorcontrib>Woldman, Wessel</creatorcontrib><creatorcontrib>Goodfellow, Marc</creatorcontrib><creatorcontrib>Chowdhury, Fahmida A.</creatorcontrib><creatorcontrib>Koutroumanidis, Michalis</creatorcontrib><creatorcontrib>Jewell, Sharon</creatorcontrib><creatorcontrib>Richardson, Mark P.</creatorcontrib><creatorcontrib>Terry, John R.</creatorcontrib><title>A computational biomarker of idiopathic generalized epilepsy from resting state EEG</title><title>Epilepsia (Copenhagen)</title><addtitle>Epilepsia</addtitle><description>Summary Epilepsy is one of the most common serious neurologic conditions. It is characterized by the tendency to have recurrent seizures, which arise against a backdrop of apparently normal brain activity. At present, clinical diagnosis relies on the following: (1) case history, which can be unreliable; (2) observation of transient abnormal activity during electroencephalography (EEG), which may not be present during clinical evaluation; and (3) if diagnostic uncertainty occurs, undertaking prolonged monitoring in an attempt to observe EEG abnormalities, which is costly. Herein, we describe the discovery and validation of an epilepsy biomarker based on computational analysis of a short segment of resting‐state (interictal) EEG. Our method utilizes a computer model of dynamic networks, where the network is inferred from the extent of synchrony between EEG channels (functional networks) and the normalized power spectrum of the clinical data. We optimize model parameters using a leave‐one‐out classification on a dataset comprising 30 people with idiopathic generalized epilepsy (IGE) and 38 normal controls. Applying this scheme to all 68 subjects we find 100% specificity at 56.7% sensitivity, and 100% sensitivity at 65.8% specificity. We believe this biomarker could readily provide additional support to the diagnostic process.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Biomarker</subject><subject>Biomarkers</subject><subject>Brain Mapping</subject><subject>Brain Waves - physiology</subject><subject>Brief Communication</subject><subject>Computational model</subject><subject>Convulsions &amp; seizures</subject><subject>Diagnosis</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Electronic Data Processing</subject><subject>Epilepsy</subject><subject>Epilepsy, Generalized - physiopathology</subject><subject>Female</subject><subject>Humans</subject><subject>IGE</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Rest</subject><subject>Resting‐state EEG</subject><subject>Spectrum Analysis</subject><subject>Young Adult</subject><issn>0013-9580</issn><issn>1528-1167</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kcFO3DAURa2qqExpF_0BZKmbdhHws2PH2SAhNFAkJJDari2P8zIYkji1k1bTr8d0AFEkvPHCR8f33UfIJ2AHkM8hjv4ARKnhDVmA5LoAUNVbsmAMRFFLzXbJ-5RuGGOVqsQ7sssryYBpsSDfj6kL_ThPdvJhsB1d-dDbeIuRhpb6xofRTtfe0TUOGG3n_2JD838djmlD2xh6GjFNfljTlB1Il8uzD2SntV3Cjw_3Hvl5uvxx8q24uDw7Pzm-KJzUAoqyagRnyCpZOwW2rXNy4CsneMucbHi9Uq7B0mlVMagdV7UCJlDUJXKHAGKPHG2947zqsXE4TDmhGaPPE2xMsN78_zL4a7MOv41kmkuosuDLgyCGX3Mew_Q-Oew6O2CYkwEtpJC1AJ7Rzy_QmzDHXNg9xZUus1Jl6uuWcjGkFLF9CgPM3K_K5OrMv1Vldv95-ifycTcZONwCf3Lbm9dNZnl1vlXeAa04nUo</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Schmidt, Helmut</creator><creator>Woldman, Wessel</creator><creator>Goodfellow, Marc</creator><creator>Chowdhury, Fahmida A.</creator><creator>Koutroumanidis, Michalis</creator><creator>Jewell, Sharon</creator><creator>Richardson, Mark P.</creator><creator>Terry, John R.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7282-7280</orcidid></search><sort><creationdate>201610</creationdate><title>A computational biomarker of idiopathic generalized epilepsy from resting state EEG</title><author>Schmidt, Helmut ; Woldman, Wessel ; Goodfellow, Marc ; Chowdhury, Fahmida A. ; Koutroumanidis, Michalis ; Jewell, Sharon ; Richardson, Mark P. ; Terry, John R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5831-47d320e0759c61af952812bc32f0c5d29b6cde4c867019c2696103e394e2ce113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Biomarker</topic><topic>Biomarkers</topic><topic>Brain Mapping</topic><topic>Brain Waves - physiology</topic><topic>Brief Communication</topic><topic>Computational model</topic><topic>Convulsions &amp; seizures</topic><topic>Diagnosis</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Electronic Data Processing</topic><topic>Epilepsy</topic><topic>Epilepsy, Generalized - physiopathology</topic><topic>Female</topic><topic>Humans</topic><topic>IGE</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Rest</topic><topic>Resting‐state EEG</topic><topic>Spectrum Analysis</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmidt, Helmut</creatorcontrib><creatorcontrib>Woldman, Wessel</creatorcontrib><creatorcontrib>Goodfellow, Marc</creatorcontrib><creatorcontrib>Chowdhury, Fahmida A.</creatorcontrib><creatorcontrib>Koutroumanidis, Michalis</creatorcontrib><creatorcontrib>Jewell, Sharon</creatorcontrib><creatorcontrib>Richardson, Mark P.</creatorcontrib><creatorcontrib>Terry, John R.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Epilepsia (Copenhagen)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmidt, Helmut</au><au>Woldman, Wessel</au><au>Goodfellow, Marc</au><au>Chowdhury, Fahmida A.</au><au>Koutroumanidis, Michalis</au><au>Jewell, Sharon</au><au>Richardson, Mark P.</au><au>Terry, John R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computational biomarker of idiopathic generalized epilepsy from resting state EEG</atitle><jtitle>Epilepsia (Copenhagen)</jtitle><addtitle>Epilepsia</addtitle><date>2016-10</date><risdate>2016</risdate><volume>57</volume><issue>10</issue><spage>e200</spage><epage>e204</epage><pages>e200-e204</pages><issn>0013-9580</issn><eissn>1528-1167</eissn><coden>EPILAK</coden><abstract>Summary Epilepsy is one of the most common serious neurologic conditions. It is characterized by the tendency to have recurrent seizures, which arise against a backdrop of apparently normal brain activity. At present, clinical diagnosis relies on the following: (1) case history, which can be unreliable; (2) observation of transient abnormal activity during electroencephalography (EEG), which may not be present during clinical evaluation; and (3) if diagnostic uncertainty occurs, undertaking prolonged monitoring in an attempt to observe EEG abnormalities, which is costly. Herein, we describe the discovery and validation of an epilepsy biomarker based on computational analysis of a short segment of resting‐state (interictal) EEG. Our method utilizes a computer model of dynamic networks, where the network is inferred from the extent of synchrony between EEG channels (functional networks) and the normalized power spectrum of the clinical data. We optimize model parameters using a leave‐one‐out classification on a dataset comprising 30 people with idiopathic generalized epilepsy (IGE) and 38 normal controls. Applying this scheme to all 68 subjects we find 100% specificity at 56.7% sensitivity, and 100% sensitivity at 65.8% specificity. We believe this biomarker could readily provide additional support to the diagnostic process.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>27501083</pmid><doi>10.1111/epi.13481</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7282-7280</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-9580
ispartof Epilepsia (Copenhagen), 2016-10, Vol.57 (10), p.e200-e204
issn 0013-9580
1528-1167
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5082517
source MEDLINE; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; Alma/SFX Local Collection
subjects Adolescent
Adult
Biomarker
Biomarkers
Brain Mapping
Brain Waves - physiology
Brief Communication
Computational model
Convulsions & seizures
Diagnosis
Electroencephalography
Electroencephalography - methods
Electronic Data Processing
Epilepsy
Epilepsy, Generalized - physiopathology
Female
Humans
IGE
Male
Middle Aged
Rest
Resting‐state EEG
Spectrum Analysis
Young Adult
title A computational biomarker of idiopathic generalized epilepsy from resting state EEG
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A43%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computational%20biomarker%20of%20idiopathic%20generalized%20epilepsy%20from%20resting%20state%20EEG&rft.jtitle=Epilepsia%20(Copenhagen)&rft.au=Schmidt,%20Helmut&rft.date=2016-10&rft.volume=57&rft.issue=10&rft.spage=e200&rft.epage=e204&rft.pages=e200-e204&rft.issn=0013-9580&rft.eissn=1528-1167&rft.coden=EPILAK&rft_id=info:doi/10.1111/epi.13481&rft_dat=%3Cproquest_pubme%3E4207561191%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826840826&rft_id=info:pmid/27501083&rfr_iscdi=true