Dissipative phases across the superconductor-to-insulator transition

Competing phenomena in low dimensional systems can generate exotic electronic phases, either through symmetry breaking or a non-trivial topology. In two-dimensional (2D) systems, the interplay between superfluidity, disorder and repulsive interactions is especially fruitful in this respect although...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-10, Vol.6 (1), p.35834-35834, Article 35834
Hauptverfasser: Couëdo, F., Crauste, O., Drillien, A. A., Humbert, V., Bergé, L., Marrache-Kikuchi, C. A., Dumoulin, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35834
container_issue 1
container_start_page 35834
container_title Scientific reports
container_volume 6
creator Couëdo, F.
Crauste, O.
Drillien, A. A.
Humbert, V.
Bergé, L.
Marrache-Kikuchi, C. A.
Dumoulin, L.
description Competing phenomena in low dimensional systems can generate exotic electronic phases, either through symmetry breaking or a non-trivial topology. In two-dimensional (2D) systems, the interplay between superfluidity, disorder and repulsive interactions is especially fruitful in this respect although both the exact nature of the phases and the microscopic processes at play are still open questions. In particular, in 2D, once superconductivity is destroyed by disorder, an insulating ground state is expected to emerge, as a result of a direct superconductor-to-insulator quantum phase transition. In such systems, no metallic state is theoretically expected to survive to the slightest disorder. Here we map out the phase diagram of amorphous NbSi thin films as functions of disorder and film thickness, with two metallic phases in between the superconducting and insulating ones. These two dissipative states, defined by a resistance which extrapolates to a finite value in the zero temperature limit, each bear a specific dependence on disorder. We argue that they originate from an inhomogeneous destruction of superconductivity, even if the system is morphologically homogeneous. Our results suggest that superconducting fluctuations can favor metallic states that would not otherwise exist.
doi_str_mv 10.1038/srep35834
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5081520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899112495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-2845fb158d62eb66e2a61da5f330a2880f402b3e355887d0be173f4702801de53</originalsourceid><addsrcrecordid>eNplkU1v1DAQhi0EolXpgT-AInGBSgF7bCfOBalqKUVaiQucLSeZdF1l7eBJVuq_x8uWZSm--GOeeef1DGOvBf8guDQfKeEktZHqGTsFrnQJEuD50fmEnRPd87w0NEo0L9kJ1LWpoOKn7PraE_nJzX6LxbR2hFS4LkWiYl5jQcuEqYuhX7o5pnKOpQ-0jC5fijm5QH72MbxiLwY3Ep4_7mfsx83n71e35erbl69Xl6uyUzXMJRilh1Zo01eAbVUhuEr0Tg9ScgfG8EFxaCVKrY2pe96iqOWgag6Gix61PGOf9rrT0m6w7zBkD6Odkt-49GCj8_bfSPBrexe3VnMjNPAs8H4vsH6Sdnu5srs3ripTN6LZisy-eyyW4s8FabYbTx2OowsYF7LCZJ-glN75evsEvY9LCrkVmWoaIUA1-m_x3-1NOBwcCG53o7SHUWb2zfFPD-SfwWXgYg9QDoU7TEcl_1P7BZ8np24</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899112495</pqid></control><display><type>article</type><title>Dissipative phases across the superconductor-to-insulator transition</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Couëdo, F. ; Crauste, O. ; Drillien, A. A. ; Humbert, V. ; Bergé, L. ; Marrache-Kikuchi, C. A. ; Dumoulin, L.</creator><creatorcontrib>Couëdo, F. ; Crauste, O. ; Drillien, A. A. ; Humbert, V. ; Bergé, L. ; Marrache-Kikuchi, C. A. ; Dumoulin, L.</creatorcontrib><description>Competing phenomena in low dimensional systems can generate exotic electronic phases, either through symmetry breaking or a non-trivial topology. In two-dimensional (2D) systems, the interplay between superfluidity, disorder and repulsive interactions is especially fruitful in this respect although both the exact nature of the phases and the microscopic processes at play are still open questions. In particular, in 2D, once superconductivity is destroyed by disorder, an insulating ground state is expected to emerge, as a result of a direct superconductor-to-insulator quantum phase transition. In such systems, no metallic state is theoretically expected to survive to the slightest disorder. Here we map out the phase diagram of amorphous NbSi thin films as functions of disorder and film thickness, with two metallic phases in between the superconducting and insulating ones. These two dissipative states, defined by a resistance which extrapolates to a finite value in the zero temperature limit, each bear a specific dependence on disorder. We argue that they originate from an inhomogeneous destruction of superconductivity, even if the system is morphologically homogeneous. Our results suggest that superconducting fluctuations can favor metallic states that would not otherwise exist.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep35834</identifier><identifier>PMID: 27786260</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/1003 ; 639/766/119/2795 ; 639/766/119/544 ; 639/766/119/995 ; Condensed Matter ; Humanities and Social Sciences ; Localization ; multidisciplinary ; Phase transitions ; Physics ; Science ; Superconductivity ; Temperature ; Temperature effects ; Thin films ; Topology</subject><ispartof>Scientific reports, 2016-10, Vol.6 (1), p.35834-35834, Article 35834</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Oct 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2016, The Author(s) 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-2845fb158d62eb66e2a61da5f330a2880f402b3e355887d0be173f4702801de53</citedby><cites>FETCH-LOGICAL-c472t-2845fb158d62eb66e2a61da5f330a2880f402b3e355887d0be173f4702801de53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5081520/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5081520/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27786260$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04687919$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Couëdo, F.</creatorcontrib><creatorcontrib>Crauste, O.</creatorcontrib><creatorcontrib>Drillien, A. A.</creatorcontrib><creatorcontrib>Humbert, V.</creatorcontrib><creatorcontrib>Bergé, L.</creatorcontrib><creatorcontrib>Marrache-Kikuchi, C. A.</creatorcontrib><creatorcontrib>Dumoulin, L.</creatorcontrib><title>Dissipative phases across the superconductor-to-insulator transition</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Competing phenomena in low dimensional systems can generate exotic electronic phases, either through symmetry breaking or a non-trivial topology. In two-dimensional (2D) systems, the interplay between superfluidity, disorder and repulsive interactions is especially fruitful in this respect although both the exact nature of the phases and the microscopic processes at play are still open questions. In particular, in 2D, once superconductivity is destroyed by disorder, an insulating ground state is expected to emerge, as a result of a direct superconductor-to-insulator quantum phase transition. In such systems, no metallic state is theoretically expected to survive to the slightest disorder. Here we map out the phase diagram of amorphous NbSi thin films as functions of disorder and film thickness, with two metallic phases in between the superconducting and insulating ones. These two dissipative states, defined by a resistance which extrapolates to a finite value in the zero temperature limit, each bear a specific dependence on disorder. We argue that they originate from an inhomogeneous destruction of superconductivity, even if the system is morphologically homogeneous. Our results suggest that superconducting fluctuations can favor metallic states that would not otherwise exist.</description><subject>639/766/119/1003</subject><subject>639/766/119/2795</subject><subject>639/766/119/544</subject><subject>639/766/119/995</subject><subject>Condensed Matter</subject><subject>Humanities and Social Sciences</subject><subject>Localization</subject><subject>multidisciplinary</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Science</subject><subject>Superconductivity</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Thin films</subject><subject>Topology</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNplkU1v1DAQhi0EolXpgT-AInGBSgF7bCfOBalqKUVaiQucLSeZdF1l7eBJVuq_x8uWZSm--GOeeef1DGOvBf8guDQfKeEktZHqGTsFrnQJEuD50fmEnRPd87w0NEo0L9kJ1LWpoOKn7PraE_nJzX6LxbR2hFS4LkWiYl5jQcuEqYuhX7o5pnKOpQ-0jC5fijm5QH72MbxiLwY3Ep4_7mfsx83n71e35erbl69Xl6uyUzXMJRilh1Zo01eAbVUhuEr0Tg9ScgfG8EFxaCVKrY2pe96iqOWgag6Gix61PGOf9rrT0m6w7zBkD6Odkt-49GCj8_bfSPBrexe3VnMjNPAs8H4vsH6Sdnu5srs3ripTN6LZisy-eyyW4s8FabYbTx2OowsYF7LCZJ-glN75evsEvY9LCrkVmWoaIUA1-m_x3-1NOBwcCG53o7SHUWb2zfFPD-SfwWXgYg9QDoU7TEcl_1P7BZ8np24</recordid><startdate>20161027</startdate><enddate>20161027</enddate><creator>Couëdo, F.</creator><creator>Crauste, O.</creator><creator>Drillien, A. A.</creator><creator>Humbert, V.</creator><creator>Bergé, L.</creator><creator>Marrache-Kikuchi, C. A.</creator><creator>Dumoulin, L.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope></search><sort><creationdate>20161027</creationdate><title>Dissipative phases across the superconductor-to-insulator transition</title><author>Couëdo, F. ; Crauste, O. ; Drillien, A. A. ; Humbert, V. ; Bergé, L. ; Marrache-Kikuchi, C. A. ; Dumoulin, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-2845fb158d62eb66e2a61da5f330a2880f402b3e355887d0be173f4702801de53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/766/119/1003</topic><topic>639/766/119/2795</topic><topic>639/766/119/544</topic><topic>639/766/119/995</topic><topic>Condensed Matter</topic><topic>Humanities and Social Sciences</topic><topic>Localization</topic><topic>multidisciplinary</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Science</topic><topic>Superconductivity</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Thin films</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Couëdo, F.</creatorcontrib><creatorcontrib>Crauste, O.</creatorcontrib><creatorcontrib>Drillien, A. A.</creatorcontrib><creatorcontrib>Humbert, V.</creatorcontrib><creatorcontrib>Bergé, L.</creatorcontrib><creatorcontrib>Marrache-Kikuchi, C. A.</creatorcontrib><creatorcontrib>Dumoulin, L.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Couëdo, F.</au><au>Crauste, O.</au><au>Drillien, A. A.</au><au>Humbert, V.</au><au>Bergé, L.</au><au>Marrache-Kikuchi, C. A.</au><au>Dumoulin, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissipative phases across the superconductor-to-insulator transition</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-10-27</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>35834</spage><epage>35834</epage><pages>35834-35834</pages><artnum>35834</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Competing phenomena in low dimensional systems can generate exotic electronic phases, either through symmetry breaking or a non-trivial topology. In two-dimensional (2D) systems, the interplay between superfluidity, disorder and repulsive interactions is especially fruitful in this respect although both the exact nature of the phases and the microscopic processes at play are still open questions. In particular, in 2D, once superconductivity is destroyed by disorder, an insulating ground state is expected to emerge, as a result of a direct superconductor-to-insulator quantum phase transition. In such systems, no metallic state is theoretically expected to survive to the slightest disorder. Here we map out the phase diagram of amorphous NbSi thin films as functions of disorder and film thickness, with two metallic phases in between the superconducting and insulating ones. These two dissipative states, defined by a resistance which extrapolates to a finite value in the zero temperature limit, each bear a specific dependence on disorder. We argue that they originate from an inhomogeneous destruction of superconductivity, even if the system is morphologically homogeneous. Our results suggest that superconducting fluctuations can favor metallic states that would not otherwise exist.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27786260</pmid><doi>10.1038/srep35834</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-10, Vol.6 (1), p.35834-35834, Article 35834
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5081520
source Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 639/766/119/1003
639/766/119/2795
639/766/119/544
639/766/119/995
Condensed Matter
Humanities and Social Sciences
Localization
multidisciplinary
Phase transitions
Physics
Science
Superconductivity
Temperature
Temperature effects
Thin films
Topology
title Dissipative phases across the superconductor-to-insulator transition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T20%3A56%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissipative%20phases%20across%20the%20superconductor-to-insulator%20transition&rft.jtitle=Scientific%20reports&rft.au=Cou%C3%ABdo,%20F.&rft.date=2016-10-27&rft.volume=6&rft.issue=1&rft.spage=35834&rft.epage=35834&rft.pages=35834-35834&rft.artnum=35834&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep35834&rft_dat=%3Cproquest_pubme%3E1899112495%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899112495&rft_id=info:pmid/27786260&rfr_iscdi=true