Expanding the genetic toolkit in Xenopus: Approaches and opportunities for human disease modeling

The amphibian model Xenopus, has been used extensively over the past century to study multiple aspects of cell and developmental biology. Xenopus offers advantages of a non-mammalian system, including high fecundity, external development, and simple housing requirements, with additional advantages o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Developmental biology 2017-06, Vol.426 (2), p.325-335
Hauptverfasser: Tandon, Panna, Conlon, Frank, Furlow, J. David, Horb, Marko E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 335
container_issue 2
container_start_page 325
container_title Developmental biology
container_volume 426
creator Tandon, Panna
Conlon, Frank
Furlow, J. David
Horb, Marko E.
description The amphibian model Xenopus, has been used extensively over the past century to study multiple aspects of cell and developmental biology. Xenopus offers advantages of a non-mammalian system, including high fecundity, external development, and simple housing requirements, with additional advantages of large embryos, highly conserved developmental processes, and close evolutionary relationship to higher vertebrates. There are two main species of Xenopus used in biomedical research, Xenopus laevis and Xenopus tropicalis; the common perception is that both species are excellent models for embryological and cell biological studies, but only Xenopus tropicalis is useful as a genetic model. The recent completion of the Xenopus laevis genome sequence combined with implementation of genome editing tools, such as TALENs (transcription activator-like effector nucleases) and CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated nucleases), greatly facilitates the use of both Xenopus laevis and Xenopus tropicalis for understanding gene function in development and disease. In this paper, we review recent advances made in Xenopus laevis and Xenopus tropicalis with TALENs and CRISPR-Cas and discuss the various approaches that have been used to generate knockout and knock-in animals in both species. These advances show that both Xenopus species are useful for genetic approaches and in particular counters the notion that Xenopus laevis is not amenable to genetic manipulations. •An overview of CRISPR-Cas and TALEN genome editing advances in Xenopus laevis and Xenopus tropicalis that have the potential to revolutionize this classical model system.•Availability of X. laevis genome sequence makes this allotetraploid species amenable to genome editing.•Genome editing in this system offers unique opportunities for modeling human disease.•Unique biological advantages of the organism provides clever strategies to avoid FO lethality.•Technological advancements allow knock-in approaches in Xenopus allow for precision base pair changes and in–frame tagging of proteins expressed from their endogenous loci.
doi_str_mv 10.1016/j.ydbio.2016.04.009
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5074924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001216061630063X</els_id><sourcerecordid>1826676568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-5edc150b9b521cf57c5a4e337dc653aa1166911b72f391a9545de50b1ff087753</originalsourceid><addsrcrecordid>eNqNkV9v1SAchsmi2Y7TT2BiuPSmFUqhxUSTZZm6ZIk3muyOUPj1HI4tVKDL9u1lnrm4G-MVAZ734c-L0GtKakqoeLev7-zgQt2USU3amhB5hDaUSF5x0V4_QxtCaFNRQcQJepHSnhDC-p4do5OmKxiVzQbpi9tFe-v8Fucd4C14yM7gHML0w2XsPL4GH5Y1vcdnyxKDNjtIuCRwWJYQ8-pddmVlDBHv1ll7bF0CnQDPwcJUvC_R81FPCV49jKfo-6eLb-dfqquvny_Pz64qw3mfKw7WUE4GOfCGmpF3husWGOusEZxpTakQktKha0YmqZa85RYKT8eR9F3H2Sn6ePAu6zAXGfgc9aSW6GYd71TQTj3d8W6ntuFGcdK1smmL4O2DIIafK6SsZpcMTJP2ENakaM-EYKKX7D_QRohOcNEXlB1QE0NKEcbHG1Gi7ntUe_W7R3XfoyKtKj2W1Ju_H_OY-VNcAT4cAChfeuMgqmQceAPWRTBZ2eD-ecAvKLKxnw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826676568</pqid></control><display><type>article</type><title>Expanding the genetic toolkit in Xenopus: Approaches and opportunities for human disease modeling</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Tandon, Panna ; Conlon, Frank ; Furlow, J. David ; Horb, Marko E.</creator><creatorcontrib>Tandon, Panna ; Conlon, Frank ; Furlow, J. David ; Horb, Marko E.</creatorcontrib><description>The amphibian model Xenopus, has been used extensively over the past century to study multiple aspects of cell and developmental biology. Xenopus offers advantages of a non-mammalian system, including high fecundity, external development, and simple housing requirements, with additional advantages of large embryos, highly conserved developmental processes, and close evolutionary relationship to higher vertebrates. There are two main species of Xenopus used in biomedical research, Xenopus laevis and Xenopus tropicalis; the common perception is that both species are excellent models for embryological and cell biological studies, but only Xenopus tropicalis is useful as a genetic model. The recent completion of the Xenopus laevis genome sequence combined with implementation of genome editing tools, such as TALENs (transcription activator-like effector nucleases) and CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated nucleases), greatly facilitates the use of both Xenopus laevis and Xenopus tropicalis for understanding gene function in development and disease. In this paper, we review recent advances made in Xenopus laevis and Xenopus tropicalis with TALENs and CRISPR-Cas and discuss the various approaches that have been used to generate knockout and knock-in animals in both species. These advances show that both Xenopus species are useful for genetic approaches and in particular counters the notion that Xenopus laevis is not amenable to genetic manipulations. •An overview of CRISPR-Cas and TALEN genome editing advances in Xenopus laevis and Xenopus tropicalis that have the potential to revolutionize this classical model system.•Availability of X. laevis genome sequence makes this allotetraploid species amenable to genome editing.•Genome editing in this system offers unique opportunities for modeling human disease.•Unique biological advantages of the organism provides clever strategies to avoid FO lethality.•Technological advancements allow knock-in approaches in Xenopus allow for precision base pair changes and in–frame tagging of proteins expressed from their endogenous loci.</description><identifier>ISSN: 0012-1606</identifier><identifier>EISSN: 1095-564X</identifier><identifier>DOI: 10.1016/j.ydbio.2016.04.009</identifier><identifier>PMID: 27109192</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>amphibians ; Animal Husbandry - organization &amp; administration ; Animals ; Base Pairing ; biomedical research ; CRISPR-Cas ; CRISPR-Cas Systems ; Disease Models, Animal ; fecundity ; Gene Editing - methods ; Gene Knock-In Techniques ; Gene Knockout Techniques ; genes ; genetic engineering ; Genome ; Human disease model ; human diseases ; Humans ; J strain ; Knock-in ; Laboratory Animal Science - organization &amp; administration ; nucleases ; nucleotide sequences ; Selective Breeding ; TALENs ; Tetraploidy ; transcription (genetics) ; Transcription Activator-Like Effector Nucleases ; Xenopus - genetics ; Xenopus laevis ; Xenopus laevis - genetics ; Xenopus tropicalis</subject><ispartof>Developmental biology, 2017-06, Vol.426 (2), p.325-335</ispartof><rights>2016 The Authors</rights><rights>Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-5edc150b9b521cf57c5a4e337dc653aa1166911b72f391a9545de50b1ff087753</citedby><cites>FETCH-LOGICAL-c558t-5edc150b9b521cf57c5a4e337dc653aa1166911b72f391a9545de50b1ff087753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S001216061630063X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27109192$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tandon, Panna</creatorcontrib><creatorcontrib>Conlon, Frank</creatorcontrib><creatorcontrib>Furlow, J. David</creatorcontrib><creatorcontrib>Horb, Marko E.</creatorcontrib><title>Expanding the genetic toolkit in Xenopus: Approaches and opportunities for human disease modeling</title><title>Developmental biology</title><addtitle>Dev Biol</addtitle><description>The amphibian model Xenopus, has been used extensively over the past century to study multiple aspects of cell and developmental biology. Xenopus offers advantages of a non-mammalian system, including high fecundity, external development, and simple housing requirements, with additional advantages of large embryos, highly conserved developmental processes, and close evolutionary relationship to higher vertebrates. There are two main species of Xenopus used in biomedical research, Xenopus laevis and Xenopus tropicalis; the common perception is that both species are excellent models for embryological and cell biological studies, but only Xenopus tropicalis is useful as a genetic model. The recent completion of the Xenopus laevis genome sequence combined with implementation of genome editing tools, such as TALENs (transcription activator-like effector nucleases) and CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated nucleases), greatly facilitates the use of both Xenopus laevis and Xenopus tropicalis for understanding gene function in development and disease. In this paper, we review recent advances made in Xenopus laevis and Xenopus tropicalis with TALENs and CRISPR-Cas and discuss the various approaches that have been used to generate knockout and knock-in animals in both species. These advances show that both Xenopus species are useful for genetic approaches and in particular counters the notion that Xenopus laevis is not amenable to genetic manipulations. •An overview of CRISPR-Cas and TALEN genome editing advances in Xenopus laevis and Xenopus tropicalis that have the potential to revolutionize this classical model system.•Availability of X. laevis genome sequence makes this allotetraploid species amenable to genome editing.•Genome editing in this system offers unique opportunities for modeling human disease.•Unique biological advantages of the organism provides clever strategies to avoid FO lethality.•Technological advancements allow knock-in approaches in Xenopus allow for precision base pair changes and in–frame tagging of proteins expressed from their endogenous loci.</description><subject>amphibians</subject><subject>Animal Husbandry - organization &amp; administration</subject><subject>Animals</subject><subject>Base Pairing</subject><subject>biomedical research</subject><subject>CRISPR-Cas</subject><subject>CRISPR-Cas Systems</subject><subject>Disease Models, Animal</subject><subject>fecundity</subject><subject>Gene Editing - methods</subject><subject>Gene Knock-In Techniques</subject><subject>Gene Knockout Techniques</subject><subject>genes</subject><subject>genetic engineering</subject><subject>Genome</subject><subject>Human disease model</subject><subject>human diseases</subject><subject>Humans</subject><subject>J strain</subject><subject>Knock-in</subject><subject>Laboratory Animal Science - organization &amp; administration</subject><subject>nucleases</subject><subject>nucleotide sequences</subject><subject>Selective Breeding</subject><subject>TALENs</subject><subject>Tetraploidy</subject><subject>transcription (genetics)</subject><subject>Transcription Activator-Like Effector Nucleases</subject><subject>Xenopus - genetics</subject><subject>Xenopus laevis</subject><subject>Xenopus laevis - genetics</subject><subject>Xenopus tropicalis</subject><issn>0012-1606</issn><issn>1095-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkV9v1SAchsmi2Y7TT2BiuPSmFUqhxUSTZZm6ZIk3muyOUPj1HI4tVKDL9u1lnrm4G-MVAZ734c-L0GtKakqoeLev7-zgQt2USU3amhB5hDaUSF5x0V4_QxtCaFNRQcQJepHSnhDC-p4do5OmKxiVzQbpi9tFe-v8Fucd4C14yM7gHML0w2XsPL4GH5Y1vcdnyxKDNjtIuCRwWJYQ8-pddmVlDBHv1ll7bF0CnQDPwcJUvC_R81FPCV49jKfo-6eLb-dfqquvny_Pz64qw3mfKw7WUE4GOfCGmpF3husWGOusEZxpTakQktKha0YmqZa85RYKT8eR9F3H2Sn6ePAu6zAXGfgc9aSW6GYd71TQTj3d8W6ntuFGcdK1smmL4O2DIIafK6SsZpcMTJP2ENakaM-EYKKX7D_QRohOcNEXlB1QE0NKEcbHG1Gi7ntUe_W7R3XfoyKtKj2W1Ju_H_OY-VNcAT4cAChfeuMgqmQceAPWRTBZ2eD-ecAvKLKxnw</recordid><startdate>20170615</startdate><enddate>20170615</enddate><creator>Tandon, Panna</creator><creator>Conlon, Frank</creator><creator>Furlow, J. David</creator><creator>Horb, Marko E.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20170615</creationdate><title>Expanding the genetic toolkit in Xenopus: Approaches and opportunities for human disease modeling</title><author>Tandon, Panna ; Conlon, Frank ; Furlow, J. David ; Horb, Marko E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-5edc150b9b521cf57c5a4e337dc653aa1166911b72f391a9545de50b1ff087753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>amphibians</topic><topic>Animal Husbandry - organization &amp; administration</topic><topic>Animals</topic><topic>Base Pairing</topic><topic>biomedical research</topic><topic>CRISPR-Cas</topic><topic>CRISPR-Cas Systems</topic><topic>Disease Models, Animal</topic><topic>fecundity</topic><topic>Gene Editing - methods</topic><topic>Gene Knock-In Techniques</topic><topic>Gene Knockout Techniques</topic><topic>genes</topic><topic>genetic engineering</topic><topic>Genome</topic><topic>Human disease model</topic><topic>human diseases</topic><topic>Humans</topic><topic>J strain</topic><topic>Knock-in</topic><topic>Laboratory Animal Science - organization &amp; administration</topic><topic>nucleases</topic><topic>nucleotide sequences</topic><topic>Selective Breeding</topic><topic>TALENs</topic><topic>Tetraploidy</topic><topic>transcription (genetics)</topic><topic>Transcription Activator-Like Effector Nucleases</topic><topic>Xenopus - genetics</topic><topic>Xenopus laevis</topic><topic>Xenopus laevis - genetics</topic><topic>Xenopus tropicalis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tandon, Panna</creatorcontrib><creatorcontrib>Conlon, Frank</creatorcontrib><creatorcontrib>Furlow, J. David</creatorcontrib><creatorcontrib>Horb, Marko E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Developmental biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tandon, Panna</au><au>Conlon, Frank</au><au>Furlow, J. David</au><au>Horb, Marko E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expanding the genetic toolkit in Xenopus: Approaches and opportunities for human disease modeling</atitle><jtitle>Developmental biology</jtitle><addtitle>Dev Biol</addtitle><date>2017-06-15</date><risdate>2017</risdate><volume>426</volume><issue>2</issue><spage>325</spage><epage>335</epage><pages>325-335</pages><issn>0012-1606</issn><eissn>1095-564X</eissn><abstract>The amphibian model Xenopus, has been used extensively over the past century to study multiple aspects of cell and developmental biology. Xenopus offers advantages of a non-mammalian system, including high fecundity, external development, and simple housing requirements, with additional advantages of large embryos, highly conserved developmental processes, and close evolutionary relationship to higher vertebrates. There are two main species of Xenopus used in biomedical research, Xenopus laevis and Xenopus tropicalis; the common perception is that both species are excellent models for embryological and cell biological studies, but only Xenopus tropicalis is useful as a genetic model. The recent completion of the Xenopus laevis genome sequence combined with implementation of genome editing tools, such as TALENs (transcription activator-like effector nucleases) and CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated nucleases), greatly facilitates the use of both Xenopus laevis and Xenopus tropicalis for understanding gene function in development and disease. In this paper, we review recent advances made in Xenopus laevis and Xenopus tropicalis with TALENs and CRISPR-Cas and discuss the various approaches that have been used to generate knockout and knock-in animals in both species. These advances show that both Xenopus species are useful for genetic approaches and in particular counters the notion that Xenopus laevis is not amenable to genetic manipulations. •An overview of CRISPR-Cas and TALEN genome editing advances in Xenopus laevis and Xenopus tropicalis that have the potential to revolutionize this classical model system.•Availability of X. laevis genome sequence makes this allotetraploid species amenable to genome editing.•Genome editing in this system offers unique opportunities for modeling human disease.•Unique biological advantages of the organism provides clever strategies to avoid FO lethality.•Technological advancements allow knock-in approaches in Xenopus allow for precision base pair changes and in–frame tagging of proteins expressed from their endogenous loci.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27109192</pmid><doi>10.1016/j.ydbio.2016.04.009</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-1606
ispartof Developmental biology, 2017-06, Vol.426 (2), p.325-335
issn 0012-1606
1095-564X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5074924
source MEDLINE; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects amphibians
Animal Husbandry - organization & administration
Animals
Base Pairing
biomedical research
CRISPR-Cas
CRISPR-Cas Systems
Disease Models, Animal
fecundity
Gene Editing - methods
Gene Knock-In Techniques
Gene Knockout Techniques
genes
genetic engineering
Genome
Human disease model
human diseases
Humans
J strain
Knock-in
Laboratory Animal Science - organization & administration
nucleases
nucleotide sequences
Selective Breeding
TALENs
Tetraploidy
transcription (genetics)
Transcription Activator-Like Effector Nucleases
Xenopus - genetics
Xenopus laevis
Xenopus laevis - genetics
Xenopus tropicalis
title Expanding the genetic toolkit in Xenopus: Approaches and opportunities for human disease modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T16%3A45%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expanding%20the%20genetic%20toolkit%20in%20Xenopus:%20Approaches%20and%20opportunities%20for%20human%20disease%20modeling&rft.jtitle=Developmental%20biology&rft.au=Tandon,%20Panna&rft.date=2017-06-15&rft.volume=426&rft.issue=2&rft.spage=325&rft.epage=335&rft.pages=325-335&rft.issn=0012-1606&rft.eissn=1095-564X&rft_id=info:doi/10.1016/j.ydbio.2016.04.009&rft_dat=%3Cproquest_pubme%3E1826676568%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826676568&rft_id=info:pmid/27109192&rft_els_id=S001216061630063X&rfr_iscdi=true