Accurate and Rigorous Prediction of the Changes in Protein Free Energies in a Large-Scale Mutation Scan

The prediction of mutation‐induced free‐energy changes in protein thermostability or protein–protein binding is of particular interest in the fields of protein design, biotechnology, and bioengineering. Herein, we achieve remarkable accuracy in a scan of 762 mutations estimating changes in protein t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2016-06, Vol.55 (26), p.7364-7368
Hauptverfasser: Gapsys, Vytautas, Michielssens, Servaas, Seeliger, Daniel, de Groot, Bert L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7368
container_issue 26
container_start_page 7364
container_title Angewandte Chemie International Edition
container_volume 55
creator Gapsys, Vytautas
Michielssens, Servaas
Seeliger, Daniel
de Groot, Bert L.
description The prediction of mutation‐induced free‐energy changes in protein thermostability or protein–protein binding is of particular interest in the fields of protein design, biotechnology, and bioengineering. Herein, we achieve remarkable accuracy in a scan of 762 mutations estimating changes in protein thermostability based on the first principles of statistical mechanics. The remaining error in the free‐energy estimates appears to be due to three sources in approximately equal parts, namely sampling, force‐field inaccuracies, and experimental uncertainty. We propose a consensus force‐field approach, which, together with an increased sampling time, leads to a free‐energy prediction accuracy that matches those reached in experiments. This versatile approach enables accurate free‐energy estimates for diverse proteins, including the prediction of changes in the melting temperature of the membrane protein neurotensin receptor 1. The computational prediction of the changes in protein thermostability upon an amino acid mutation greatly aids protein engineering and design. It is shown that such predictions can be rendered remarkably accurate by means of molecular‐dynamics‐based alchemical free‐energy calculations.
doi_str_mv 10.1002/anie.201510054
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5074281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4089397681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c7074-5432ecde4f7e1d211e1493da49c7df6cd4a9f4c981272f66494641b28a25f68b3</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhSMEoqWwZYkssWGTIX7F9gZpNJ0-pGFAPITUjeVxbjIuGbu1E6D_HpeUUWEBq-ur891jX5-ieI6rGa4q8tp4BzNSYZ47zh4Uh5gTXFIh6MN8ZpSWQnJ8UDxJ6TLzUlb14-KACEwIofiw6ObWjtEMgIxv0AfXhRjGhN5HaJwdXPAotGjYAlpsje8gIeezGAbI9SQCoKWH2LlJMGhlYgflR2t6QG_HwfxyyK1_WjxqTZ_g2V09Kj6fLD8tzsrVu9PzxXxVWlEJVnJGCdgGWCsANwRjwEzRxjBlRdPWtmFGtcwqiYkgbV0zxWqGN0QawttabuhR8WbyvRo3O2gs-CGaXl9FtzPxRgfj9J-Kd1vdhW-a5-uJxNng1Z1BDNcjpEHvXLLQ98ZD_hmNhRKylpKSjL78C70MY_R5PY1VJYmoMcH_pISqhRCcqEzNJsrGkFKEdv9kXOnbpPVt0nqfdB54cX_RPf472gyoCfjuerj5j52er8-X983LadalAX7sZ038qmtBBddf1qd6fVHxi-OzYy3pT_CNwvg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1796777529</pqid></control><display><type>article</type><title>Accurate and Rigorous Prediction of the Changes in Protein Free Energies in a Large-Scale Mutation Scan</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Gapsys, Vytautas ; Michielssens, Servaas ; Seeliger, Daniel ; de Groot, Bert L.</creator><creatorcontrib>Gapsys, Vytautas ; Michielssens, Servaas ; Seeliger, Daniel ; de Groot, Bert L.</creatorcontrib><description>The prediction of mutation‐induced free‐energy changes in protein thermostability or protein–protein binding is of particular interest in the fields of protein design, biotechnology, and bioengineering. Herein, we achieve remarkable accuracy in a scan of 762 mutations estimating changes in protein thermostability based on the first principles of statistical mechanics. The remaining error in the free‐energy estimates appears to be due to three sources in approximately equal parts, namely sampling, force‐field inaccuracies, and experimental uncertainty. We propose a consensus force‐field approach, which, together with an increased sampling time, leads to a free‐energy prediction accuracy that matches those reached in experiments. This versatile approach enables accurate free‐energy estimates for diverse proteins, including the prediction of changes in the melting temperature of the membrane protein neurotensin receptor 1. The computational prediction of the changes in protein thermostability upon an amino acid mutation greatly aids protein engineering and design. It is shown that such predictions can be rendered remarkably accurate by means of molecular‐dynamics‐based alchemical free‐energy calculations.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201510054</identifier><identifier>PMID: 27122231</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Binding energy ; Bioengineering ; Biotechnology ; Communication ; Communications ; Design ; Errors ; Estimates ; Estimation ; force field ; Free energy ; free-energy calculations ; Melting ; Membrane proteins ; Mutation ; Neurotensin ; Protein Binding ; Protein Stability ; Proteins ; Receptors, Neurotensin - chemistry ; Receptors, Neurotensin - genetics ; Receptors, Neurotensin - metabolism ; Sampling ; Statistical mechanics ; Statistics ; Temperature effects ; Thermal stability ; Thermodynamics ; thermostability ; Uncertainty</subject><ispartof>Angewandte Chemie International Edition, 2016-06, Vol.55 (26), p.7364-7368</ispartof><rights>2016 The Authors. Published by Wiley-VCH Verlag GmbH &amp; Co. KGaA.</rights><rights>2016 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c7074-5432ecde4f7e1d211e1493da49c7df6cd4a9f4c981272f66494641b28a25f68b3</citedby><cites>FETCH-LOGICAL-c7074-5432ecde4f7e1d211e1493da49c7df6cd4a9f4c981272f66494641b28a25f68b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201510054$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201510054$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27122231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gapsys, Vytautas</creatorcontrib><creatorcontrib>Michielssens, Servaas</creatorcontrib><creatorcontrib>Seeliger, Daniel</creatorcontrib><creatorcontrib>de Groot, Bert L.</creatorcontrib><title>Accurate and Rigorous Prediction of the Changes in Protein Free Energies in a Large-Scale Mutation Scan</title><title>Angewandte Chemie International Edition</title><addtitle>Angew. Chem. Int. Ed</addtitle><description>The prediction of mutation‐induced free‐energy changes in protein thermostability or protein–protein binding is of particular interest in the fields of protein design, biotechnology, and bioengineering. Herein, we achieve remarkable accuracy in a scan of 762 mutations estimating changes in protein thermostability based on the first principles of statistical mechanics. The remaining error in the free‐energy estimates appears to be due to three sources in approximately equal parts, namely sampling, force‐field inaccuracies, and experimental uncertainty. We propose a consensus force‐field approach, which, together with an increased sampling time, leads to a free‐energy prediction accuracy that matches those reached in experiments. This versatile approach enables accurate free‐energy estimates for diverse proteins, including the prediction of changes in the melting temperature of the membrane protein neurotensin receptor 1. The computational prediction of the changes in protein thermostability upon an amino acid mutation greatly aids protein engineering and design. It is shown that such predictions can be rendered remarkably accurate by means of molecular‐dynamics‐based alchemical free‐energy calculations.</description><subject>Binding energy</subject><subject>Bioengineering</subject><subject>Biotechnology</subject><subject>Communication</subject><subject>Communications</subject><subject>Design</subject><subject>Errors</subject><subject>Estimates</subject><subject>Estimation</subject><subject>force field</subject><subject>Free energy</subject><subject>free-energy calculations</subject><subject>Melting</subject><subject>Membrane proteins</subject><subject>Mutation</subject><subject>Neurotensin</subject><subject>Protein Binding</subject><subject>Protein Stability</subject><subject>Proteins</subject><subject>Receptors, Neurotensin - chemistry</subject><subject>Receptors, Neurotensin - genetics</subject><subject>Receptors, Neurotensin - metabolism</subject><subject>Sampling</subject><subject>Statistical mechanics</subject><subject>Statistics</subject><subject>Temperature effects</subject><subject>Thermal stability</subject><subject>Thermodynamics</subject><subject>thermostability</subject><subject>Uncertainty</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhSMEoqWwZYkssWGTIX7F9gZpNJ0-pGFAPITUjeVxbjIuGbu1E6D_HpeUUWEBq-ur891jX5-ieI6rGa4q8tp4BzNSYZ47zh4Uh5gTXFIh6MN8ZpSWQnJ8UDxJ6TLzUlb14-KACEwIofiw6ObWjtEMgIxv0AfXhRjGhN5HaJwdXPAotGjYAlpsje8gIeezGAbI9SQCoKWH2LlJMGhlYgflR2t6QG_HwfxyyK1_WjxqTZ_g2V09Kj6fLD8tzsrVu9PzxXxVWlEJVnJGCdgGWCsANwRjwEzRxjBlRdPWtmFGtcwqiYkgbV0zxWqGN0QawttabuhR8WbyvRo3O2gs-CGaXl9FtzPxRgfj9J-Kd1vdhW-a5-uJxNng1Z1BDNcjpEHvXLLQ98ZD_hmNhRKylpKSjL78C70MY_R5PY1VJYmoMcH_pISqhRCcqEzNJsrGkFKEdv9kXOnbpPVt0nqfdB54cX_RPf472gyoCfjuerj5j52er8-X983LadalAX7sZ038qmtBBddf1qd6fVHxi-OzYy3pT_CNwvg</recordid><startdate>20160620</startdate><enddate>20160620</enddate><creator>Gapsys, Vytautas</creator><creator>Michielssens, Servaas</creator><creator>Seeliger, Daniel</creator><creator>de Groot, Bert L.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160620</creationdate><title>Accurate and Rigorous Prediction of the Changes in Protein Free Energies in a Large-Scale Mutation Scan</title><author>Gapsys, Vytautas ; Michielssens, Servaas ; Seeliger, Daniel ; de Groot, Bert L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c7074-5432ecde4f7e1d211e1493da49c7df6cd4a9f4c981272f66494641b28a25f68b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Binding energy</topic><topic>Bioengineering</topic><topic>Biotechnology</topic><topic>Communication</topic><topic>Communications</topic><topic>Design</topic><topic>Errors</topic><topic>Estimates</topic><topic>Estimation</topic><topic>force field</topic><topic>Free energy</topic><topic>free-energy calculations</topic><topic>Melting</topic><topic>Membrane proteins</topic><topic>Mutation</topic><topic>Neurotensin</topic><topic>Protein Binding</topic><topic>Protein Stability</topic><topic>Proteins</topic><topic>Receptors, Neurotensin - chemistry</topic><topic>Receptors, Neurotensin - genetics</topic><topic>Receptors, Neurotensin - metabolism</topic><topic>Sampling</topic><topic>Statistical mechanics</topic><topic>Statistics</topic><topic>Temperature effects</topic><topic>Thermal stability</topic><topic>Thermodynamics</topic><topic>thermostability</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gapsys, Vytautas</creatorcontrib><creatorcontrib>Michielssens, Servaas</creatorcontrib><creatorcontrib>Seeliger, Daniel</creatorcontrib><creatorcontrib>de Groot, Bert L.</creatorcontrib><collection>Istex</collection><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gapsys, Vytautas</au><au>Michielssens, Servaas</au><au>Seeliger, Daniel</au><au>de Groot, Bert L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate and Rigorous Prediction of the Changes in Protein Free Energies in a Large-Scale Mutation Scan</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew. Chem. Int. Ed</addtitle><date>2016-06-20</date><risdate>2016</risdate><volume>55</volume><issue>26</issue><spage>7364</spage><epage>7368</epage><pages>7364-7368</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>The prediction of mutation‐induced free‐energy changes in protein thermostability or protein–protein binding is of particular interest in the fields of protein design, biotechnology, and bioengineering. Herein, we achieve remarkable accuracy in a scan of 762 mutations estimating changes in protein thermostability based on the first principles of statistical mechanics. The remaining error in the free‐energy estimates appears to be due to three sources in approximately equal parts, namely sampling, force‐field inaccuracies, and experimental uncertainty. We propose a consensus force‐field approach, which, together with an increased sampling time, leads to a free‐energy prediction accuracy that matches those reached in experiments. This versatile approach enables accurate free‐energy estimates for diverse proteins, including the prediction of changes in the melting temperature of the membrane protein neurotensin receptor 1. The computational prediction of the changes in protein thermostability upon an amino acid mutation greatly aids protein engineering and design. It is shown that such predictions can be rendered remarkably accurate by means of molecular‐dynamics‐based alchemical free‐energy calculations.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>27122231</pmid><doi>10.1002/anie.201510054</doi><tpages>5</tpages><edition>International ed. in English</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2016-06, Vol.55 (26), p.7364-7368
issn 1433-7851
1521-3773
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5074281
source MEDLINE; Wiley Online Library All Journals
subjects Binding energy
Bioengineering
Biotechnology
Communication
Communications
Design
Errors
Estimates
Estimation
force field
Free energy
free-energy calculations
Melting
Membrane proteins
Mutation
Neurotensin
Protein Binding
Protein Stability
Proteins
Receptors, Neurotensin - chemistry
Receptors, Neurotensin - genetics
Receptors, Neurotensin - metabolism
Sampling
Statistical mechanics
Statistics
Temperature effects
Thermal stability
Thermodynamics
thermostability
Uncertainty
title Accurate and Rigorous Prediction of the Changes in Protein Free Energies in a Large-Scale Mutation Scan
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A27%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20and%20Rigorous%20Prediction%20of%20the%20Changes%20in%20Protein%20Free%20Energies%20in%20a%20Large-Scale%20Mutation%20Scan&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Gapsys,%20Vytautas&rft.date=2016-06-20&rft.volume=55&rft.issue=26&rft.spage=7364&rft.epage=7368&rft.pages=7364-7368&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201510054&rft_dat=%3Cproquest_pubme%3E4089397681%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1796777529&rft_id=info:pmid/27122231&rfr_iscdi=true