Accurate and Rigorous Prediction of the Changes in Protein Free Energies in a Large-Scale Mutation Scan
The prediction of mutation‐induced free‐energy changes in protein thermostability or protein–protein binding is of particular interest in the fields of protein design, biotechnology, and bioengineering. Herein, we achieve remarkable accuracy in a scan of 762 mutations estimating changes in protein t...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2016-06, Vol.55 (26), p.7364-7368 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7368 |
---|---|
container_issue | 26 |
container_start_page | 7364 |
container_title | Angewandte Chemie International Edition |
container_volume | 55 |
creator | Gapsys, Vytautas Michielssens, Servaas Seeliger, Daniel de Groot, Bert L. |
description | The prediction of mutation‐induced free‐energy changes in protein thermostability or protein–protein binding is of particular interest in the fields of protein design, biotechnology, and bioengineering. Herein, we achieve remarkable accuracy in a scan of 762 mutations estimating changes in protein thermostability based on the first principles of statistical mechanics. The remaining error in the free‐energy estimates appears to be due to three sources in approximately equal parts, namely sampling, force‐field inaccuracies, and experimental uncertainty. We propose a consensus force‐field approach, which, together with an increased sampling time, leads to a free‐energy prediction accuracy that matches those reached in experiments. This versatile approach enables accurate free‐energy estimates for diverse proteins, including the prediction of changes in the melting temperature of the membrane protein neurotensin receptor 1.
The computational prediction of the changes in protein thermostability upon an amino acid mutation greatly aids protein engineering and design. It is shown that such predictions can be rendered remarkably accurate by means of molecular‐dynamics‐based alchemical free‐energy calculations. |
doi_str_mv | 10.1002/anie.201510054 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5074281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4089397681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c7074-5432ecde4f7e1d211e1493da49c7df6cd4a9f4c981272f66494641b28a25f68b3</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhSMEoqWwZYkssWGTIX7F9gZpNJ0-pGFAPITUjeVxbjIuGbu1E6D_HpeUUWEBq-ur891jX5-ieI6rGa4q8tp4BzNSYZ47zh4Uh5gTXFIh6MN8ZpSWQnJ8UDxJ6TLzUlb14-KACEwIofiw6ObWjtEMgIxv0AfXhRjGhN5HaJwdXPAotGjYAlpsje8gIeezGAbI9SQCoKWH2LlJMGhlYgflR2t6QG_HwfxyyK1_WjxqTZ_g2V09Kj6fLD8tzsrVu9PzxXxVWlEJVnJGCdgGWCsANwRjwEzRxjBlRdPWtmFGtcwqiYkgbV0zxWqGN0QawttabuhR8WbyvRo3O2gs-CGaXl9FtzPxRgfj9J-Kd1vdhW-a5-uJxNng1Z1BDNcjpEHvXLLQ98ZD_hmNhRKylpKSjL78C70MY_R5PY1VJYmoMcH_pISqhRCcqEzNJsrGkFKEdv9kXOnbpPVt0nqfdB54cX_RPf472gyoCfjuerj5j52er8-X983LadalAX7sZ038qmtBBddf1qd6fVHxi-OzYy3pT_CNwvg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1796777529</pqid></control><display><type>article</type><title>Accurate and Rigorous Prediction of the Changes in Protein Free Energies in a Large-Scale Mutation Scan</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Gapsys, Vytautas ; Michielssens, Servaas ; Seeliger, Daniel ; de Groot, Bert L.</creator><creatorcontrib>Gapsys, Vytautas ; Michielssens, Servaas ; Seeliger, Daniel ; de Groot, Bert L.</creatorcontrib><description>The prediction of mutation‐induced free‐energy changes in protein thermostability or protein–protein binding is of particular interest in the fields of protein design, biotechnology, and bioengineering. Herein, we achieve remarkable accuracy in a scan of 762 mutations estimating changes in protein thermostability based on the first principles of statistical mechanics. The remaining error in the free‐energy estimates appears to be due to three sources in approximately equal parts, namely sampling, force‐field inaccuracies, and experimental uncertainty. We propose a consensus force‐field approach, which, together with an increased sampling time, leads to a free‐energy prediction accuracy that matches those reached in experiments. This versatile approach enables accurate free‐energy estimates for diverse proteins, including the prediction of changes in the melting temperature of the membrane protein neurotensin receptor 1.
The computational prediction of the changes in protein thermostability upon an amino acid mutation greatly aids protein engineering and design. It is shown that such predictions can be rendered remarkably accurate by means of molecular‐dynamics‐based alchemical free‐energy calculations.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201510054</identifier><identifier>PMID: 27122231</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Binding energy ; Bioengineering ; Biotechnology ; Communication ; Communications ; Design ; Errors ; Estimates ; Estimation ; force field ; Free energy ; free-energy calculations ; Melting ; Membrane proteins ; Mutation ; Neurotensin ; Protein Binding ; Protein Stability ; Proteins ; Receptors, Neurotensin - chemistry ; Receptors, Neurotensin - genetics ; Receptors, Neurotensin - metabolism ; Sampling ; Statistical mechanics ; Statistics ; Temperature effects ; Thermal stability ; Thermodynamics ; thermostability ; Uncertainty</subject><ispartof>Angewandte Chemie International Edition, 2016-06, Vol.55 (26), p.7364-7368</ispartof><rights>2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.</rights><rights>2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c7074-5432ecde4f7e1d211e1493da49c7df6cd4a9f4c981272f66494641b28a25f68b3</citedby><cites>FETCH-LOGICAL-c7074-5432ecde4f7e1d211e1493da49c7df6cd4a9f4c981272f66494641b28a25f68b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201510054$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201510054$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27122231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gapsys, Vytautas</creatorcontrib><creatorcontrib>Michielssens, Servaas</creatorcontrib><creatorcontrib>Seeliger, Daniel</creatorcontrib><creatorcontrib>de Groot, Bert L.</creatorcontrib><title>Accurate and Rigorous Prediction of the Changes in Protein Free Energies in a Large-Scale Mutation Scan</title><title>Angewandte Chemie International Edition</title><addtitle>Angew. Chem. Int. Ed</addtitle><description>The prediction of mutation‐induced free‐energy changes in protein thermostability or protein–protein binding is of particular interest in the fields of protein design, biotechnology, and bioengineering. Herein, we achieve remarkable accuracy in a scan of 762 mutations estimating changes in protein thermostability based on the first principles of statistical mechanics. The remaining error in the free‐energy estimates appears to be due to three sources in approximately equal parts, namely sampling, force‐field inaccuracies, and experimental uncertainty. We propose a consensus force‐field approach, which, together with an increased sampling time, leads to a free‐energy prediction accuracy that matches those reached in experiments. This versatile approach enables accurate free‐energy estimates for diverse proteins, including the prediction of changes in the melting temperature of the membrane protein neurotensin receptor 1.
The computational prediction of the changes in protein thermostability upon an amino acid mutation greatly aids protein engineering and design. It is shown that such predictions can be rendered remarkably accurate by means of molecular‐dynamics‐based alchemical free‐energy calculations.</description><subject>Binding energy</subject><subject>Bioengineering</subject><subject>Biotechnology</subject><subject>Communication</subject><subject>Communications</subject><subject>Design</subject><subject>Errors</subject><subject>Estimates</subject><subject>Estimation</subject><subject>force field</subject><subject>Free energy</subject><subject>free-energy calculations</subject><subject>Melting</subject><subject>Membrane proteins</subject><subject>Mutation</subject><subject>Neurotensin</subject><subject>Protein Binding</subject><subject>Protein Stability</subject><subject>Proteins</subject><subject>Receptors, Neurotensin - chemistry</subject><subject>Receptors, Neurotensin - genetics</subject><subject>Receptors, Neurotensin - metabolism</subject><subject>Sampling</subject><subject>Statistical mechanics</subject><subject>Statistics</subject><subject>Temperature effects</subject><subject>Thermal stability</subject><subject>Thermodynamics</subject><subject>thermostability</subject><subject>Uncertainty</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhSMEoqWwZYkssWGTIX7F9gZpNJ0-pGFAPITUjeVxbjIuGbu1E6D_HpeUUWEBq-ur891jX5-ieI6rGa4q8tp4BzNSYZ47zh4Uh5gTXFIh6MN8ZpSWQnJ8UDxJ6TLzUlb14-KACEwIofiw6ObWjtEMgIxv0AfXhRjGhN5HaJwdXPAotGjYAlpsje8gIeezGAbI9SQCoKWH2LlJMGhlYgflR2t6QG_HwfxyyK1_WjxqTZ_g2V09Kj6fLD8tzsrVu9PzxXxVWlEJVnJGCdgGWCsANwRjwEzRxjBlRdPWtmFGtcwqiYkgbV0zxWqGN0QawttabuhR8WbyvRo3O2gs-CGaXl9FtzPxRgfj9J-Kd1vdhW-a5-uJxNng1Z1BDNcjpEHvXLLQ98ZD_hmNhRKylpKSjL78C70MY_R5PY1VJYmoMcH_pISqhRCcqEzNJsrGkFKEdv9kXOnbpPVt0nqfdB54cX_RPf472gyoCfjuerj5j52er8-X983LadalAX7sZ038qmtBBddf1qd6fVHxi-OzYy3pT_CNwvg</recordid><startdate>20160620</startdate><enddate>20160620</enddate><creator>Gapsys, Vytautas</creator><creator>Michielssens, Servaas</creator><creator>Seeliger, Daniel</creator><creator>de Groot, Bert L.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160620</creationdate><title>Accurate and Rigorous Prediction of the Changes in Protein Free Energies in a Large-Scale Mutation Scan</title><author>Gapsys, Vytautas ; Michielssens, Servaas ; Seeliger, Daniel ; de Groot, Bert L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c7074-5432ecde4f7e1d211e1493da49c7df6cd4a9f4c981272f66494641b28a25f68b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Binding energy</topic><topic>Bioengineering</topic><topic>Biotechnology</topic><topic>Communication</topic><topic>Communications</topic><topic>Design</topic><topic>Errors</topic><topic>Estimates</topic><topic>Estimation</topic><topic>force field</topic><topic>Free energy</topic><topic>free-energy calculations</topic><topic>Melting</topic><topic>Membrane proteins</topic><topic>Mutation</topic><topic>Neurotensin</topic><topic>Protein Binding</topic><topic>Protein Stability</topic><topic>Proteins</topic><topic>Receptors, Neurotensin - chemistry</topic><topic>Receptors, Neurotensin - genetics</topic><topic>Receptors, Neurotensin - metabolism</topic><topic>Sampling</topic><topic>Statistical mechanics</topic><topic>Statistics</topic><topic>Temperature effects</topic><topic>Thermal stability</topic><topic>Thermodynamics</topic><topic>thermostability</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gapsys, Vytautas</creatorcontrib><creatorcontrib>Michielssens, Servaas</creatorcontrib><creatorcontrib>Seeliger, Daniel</creatorcontrib><creatorcontrib>de Groot, Bert L.</creatorcontrib><collection>Istex</collection><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gapsys, Vytautas</au><au>Michielssens, Servaas</au><au>Seeliger, Daniel</au><au>de Groot, Bert L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate and Rigorous Prediction of the Changes in Protein Free Energies in a Large-Scale Mutation Scan</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew. Chem. Int. Ed</addtitle><date>2016-06-20</date><risdate>2016</risdate><volume>55</volume><issue>26</issue><spage>7364</spage><epage>7368</epage><pages>7364-7368</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>The prediction of mutation‐induced free‐energy changes in protein thermostability or protein–protein binding is of particular interest in the fields of protein design, biotechnology, and bioengineering. Herein, we achieve remarkable accuracy in a scan of 762 mutations estimating changes in protein thermostability based on the first principles of statistical mechanics. The remaining error in the free‐energy estimates appears to be due to three sources in approximately equal parts, namely sampling, force‐field inaccuracies, and experimental uncertainty. We propose a consensus force‐field approach, which, together with an increased sampling time, leads to a free‐energy prediction accuracy that matches those reached in experiments. This versatile approach enables accurate free‐energy estimates for diverse proteins, including the prediction of changes in the melting temperature of the membrane protein neurotensin receptor 1.
The computational prediction of the changes in protein thermostability upon an amino acid mutation greatly aids protein engineering and design. It is shown that such predictions can be rendered remarkably accurate by means of molecular‐dynamics‐based alchemical free‐energy calculations.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>27122231</pmid><doi>10.1002/anie.201510054</doi><tpages>5</tpages><edition>International ed. in English</edition><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2016-06, Vol.55 (26), p.7364-7368 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5074281 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Binding energy Bioengineering Biotechnology Communication Communications Design Errors Estimates Estimation force field Free energy free-energy calculations Melting Membrane proteins Mutation Neurotensin Protein Binding Protein Stability Proteins Receptors, Neurotensin - chemistry Receptors, Neurotensin - genetics Receptors, Neurotensin - metabolism Sampling Statistical mechanics Statistics Temperature effects Thermal stability Thermodynamics thermostability Uncertainty |
title | Accurate and Rigorous Prediction of the Changes in Protein Free Energies in a Large-Scale Mutation Scan |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A27%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20and%20Rigorous%20Prediction%20of%20the%20Changes%20in%20Protein%20Free%20Energies%20in%20a%20Large-Scale%20Mutation%20Scan&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Gapsys,%20Vytautas&rft.date=2016-06-20&rft.volume=55&rft.issue=26&rft.spage=7364&rft.epage=7368&rft.pages=7364-7368&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201510054&rft_dat=%3Cproquest_pubme%3E4089397681%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1796777529&rft_id=info:pmid/27122231&rfr_iscdi=true |