Amyloid precursor protein maintains constitutive and adaptive plasticity of dendritic spines in adult brain by regulating D-serine homeostasis
Dynamic synapses facilitate activity‐dependent remodeling of neural circuits, thereby providing the structural substrate for adaptive behaviors. However, the mechanisms governing dynamic synapses in adult brain are still largely unknown. Here, we demonstrate that in the cortex of adult amyloid precu...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2016-10, Vol.35 (20), p.2213-2222 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2222 |
---|---|
container_issue | 20 |
container_start_page | 2213 |
container_title | The EMBO journal |
container_volume | 35 |
creator | Zou, Chengyu Crux, Sophie Marinesco, Stephane Montagna, Elena Sgobio, Carmelo Shi, Yuan Shi, Song Zhu, Kaichuan Dorostkar, Mario M Müller, Ulrike C Herms, Jochen |
description | Dynamic synapses facilitate activity‐dependent remodeling of neural circuits, thereby providing the structural substrate for adaptive behaviors. However, the mechanisms governing dynamic synapses in adult brain are still largely unknown. Here, we demonstrate that in the cortex of adult amyloid precursor protein knockout (APP‐KO) mice, spine formation and elimination were both reduced while overall spine density remained unaltered. When housed under environmental enrichment, APP‐KO mice failed to respond with an increase in spine density. Spine morphology was also altered in the absence of APP. The underlying mechanism of these spine abnormalities in APP‐KO mice was ascribed to an impairment in D‐serine homeostasis. Extracellular D‐serine concentration was significantly reduced in APP‐KO mice, coupled with an increase of total D‐serine. Strikingly, chronic treatment with exogenous D‐serine normalized D‐serine homeostasis and restored the deficits of spine dynamics, adaptive plasticity, and morphology in APP‐KO mice. The cognitive deficit observed in APP‐KO mice was also rescued by D‐serine treatment. These data suggest that APP regulates homeostasis of D‐serine, thereby maintaining the constitutive and adaptive plasticity of dendritic spines in adult brain.
Synopsis
The absence of APP in adult brain reduces dendritic spine dynamics and impairs structural spine plasticity, resulting in cognitive deficits on the consequence of disrupting D‐serine homeostasis.
In vivo
dynamics of dendritic spine formation and stabilization is reduced in the adult APP‐KO mouse brain.
Structural plasticity of dendritic spines, induced by environmental enrichment, is impaired in APP‐KO mice.
Dendritic spine morphology is accordingly changed in APP‐KO mice.
D‐serine homeostasis is disrupted in the absence of APP, which could be normalized by exogenous D‐serine treatment.
Chronic treatment with D‐serine restores the deficits on dendritic spines and cognitive performance of APP‐KO mice.
Graphical Abstract
Loss of APP in the adult brain impairs dendritic spine dynamics and plasticity leading to cognitive deficits. |
doi_str_mv | 10.15252/embj.201694085 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5069548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4218969541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5515-86d095c2a6ac6aa52c02a3abf8c844dc65df35d4c8de1d8d9ae034f76c0b2d6c3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhiMEokvhzA1Z4sIlre3ETsIBqSxlAW0LBxBHy7EnWy-JndpOYV-CZ8bbLasFCXGw7NH883lm_ix7SvAJYZTRUxja9QnFhDclrtm9bEZKjnOKK3Y_m2HKSV6SujnKHoWwxhizuiIPsyNasYqWvJhlP8-GTe-MRqMHNfngfHq5CMaiQRob0wlIORuiiVM0N4Ck1UhqOd4GYy9TRpm4Qa5DGqz2JsUojMZCQIki9dRH1PoEQu0GeVhNvYzGrtCbPIBPMnTlBnAhymDC4-xBJ_sAT-7u4-zL2_PP83f58uPi_fxsmSvGCMtrrnHDFJVcKi4lowpTWci2q1VdllpxpruC6VLVGoiudSMBF2VXcYVbqrkqjrNXO-44tQNoBTZ62YvRm0H6jXDSiD8z1lyJlbsRDPOGlXUCvLgDeHc9QYhiMEFB30sLbgqC1EXZNCztPkmf_yVdu8nbNN5WhTGpGNsCT3cq5V0IHrp9MwSLW6_F1mux9zpVPDucYa__bW4SvNwJvpseNv_jifOL1x8O6XhXHFKdXYE_6PqfDeW7EhMi_Nj_J_03wauiYuLr5UJcLtNiFhefxLz4BdCK2pc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1830017558</pqid></control><display><type>article</type><title>Amyloid precursor protein maintains constitutive and adaptive plasticity of dendritic spines in adult brain by regulating D-serine homeostasis</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Zou, Chengyu ; Crux, Sophie ; Marinesco, Stephane ; Montagna, Elena ; Sgobio, Carmelo ; Shi, Yuan ; Shi, Song ; Zhu, Kaichuan ; Dorostkar, Mario M ; Müller, Ulrike C ; Herms, Jochen</creator><creatorcontrib>Zou, Chengyu ; Crux, Sophie ; Marinesco, Stephane ; Montagna, Elena ; Sgobio, Carmelo ; Shi, Yuan ; Shi, Song ; Zhu, Kaichuan ; Dorostkar, Mario M ; Müller, Ulrike C ; Herms, Jochen</creatorcontrib><description>Dynamic synapses facilitate activity‐dependent remodeling of neural circuits, thereby providing the structural substrate for adaptive behaviors. However, the mechanisms governing dynamic synapses in adult brain are still largely unknown. Here, we demonstrate that in the cortex of adult amyloid precursor protein knockout (APP‐KO) mice, spine formation and elimination were both reduced while overall spine density remained unaltered. When housed under environmental enrichment, APP‐KO mice failed to respond with an increase in spine density. Spine morphology was also altered in the absence of APP. The underlying mechanism of these spine abnormalities in APP‐KO mice was ascribed to an impairment in D‐serine homeostasis. Extracellular D‐serine concentration was significantly reduced in APP‐KO mice, coupled with an increase of total D‐serine. Strikingly, chronic treatment with exogenous D‐serine normalized D‐serine homeostasis and restored the deficits of spine dynamics, adaptive plasticity, and morphology in APP‐KO mice. The cognitive deficit observed in APP‐KO mice was also rescued by D‐serine treatment. These data suggest that APP regulates homeostasis of D‐serine, thereby maintaining the constitutive and adaptive plasticity of dendritic spines in adult brain.
Synopsis
The absence of APP in adult brain reduces dendritic spine dynamics and impairs structural spine plasticity, resulting in cognitive deficits on the consequence of disrupting D‐serine homeostasis.
In vivo
dynamics of dendritic spine formation and stabilization is reduced in the adult APP‐KO mouse brain.
Structural plasticity of dendritic spines, induced by environmental enrichment, is impaired in APP‐KO mice.
Dendritic spine morphology is accordingly changed in APP‐KO mice.
D‐serine homeostasis is disrupted in the absence of APP, which could be normalized by exogenous D‐serine treatment.
Chronic treatment with D‐serine restores the deficits on dendritic spines and cognitive performance of APP‐KO mice.
Graphical Abstract
Loss of APP in the adult brain impairs dendritic spine dynamics and plasticity leading to cognitive deficits.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.201694085</identifier><identifier>PMID: 27572463</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>London: Blackwell Publishing Ltd</publisher><subject>Amyloid beta-Protein Precursor - genetics ; Amyloid beta-Protein Precursor - metabolism ; amyloid precursor protein ; Animals ; Brain - metabolism ; Cognition Disorders - metabolism ; Cognitive ability ; D-serine ; dendritic spine ; Dendritic Spines - metabolism ; EMBO27 ; Female ; Homeostasis ; Mice, Knockout ; microelectrode biosensor ; Morphology ; Neurology ; Neuronal Plasticity ; Plasticity ; Proteins ; Rodents ; Serine - metabolism ; Spine ; spine plasticity ; two-photon in vivo imaging</subject><ispartof>The EMBO journal, 2016-10, Vol.35 (20), p.2213-2222</ispartof><rights>The Author(s) 2016</rights><rights>2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license</rights><rights>2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.</rights><rights>2016 EMBO</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5515-86d095c2a6ac6aa52c02a3abf8c844dc65df35d4c8de1d8d9ae034f76c0b2d6c3</citedby><cites>FETCH-LOGICAL-c5515-86d095c2a6ac6aa52c02a3abf8c844dc65df35d4c8de1d8d9ae034f76c0b2d6c3</cites><orcidid>0000-0002-6201-1042</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5069548/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5069548/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27572463$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zou, Chengyu</creatorcontrib><creatorcontrib>Crux, Sophie</creatorcontrib><creatorcontrib>Marinesco, Stephane</creatorcontrib><creatorcontrib>Montagna, Elena</creatorcontrib><creatorcontrib>Sgobio, Carmelo</creatorcontrib><creatorcontrib>Shi, Yuan</creatorcontrib><creatorcontrib>Shi, Song</creatorcontrib><creatorcontrib>Zhu, Kaichuan</creatorcontrib><creatorcontrib>Dorostkar, Mario M</creatorcontrib><creatorcontrib>Müller, Ulrike C</creatorcontrib><creatorcontrib>Herms, Jochen</creatorcontrib><title>Amyloid precursor protein maintains constitutive and adaptive plasticity of dendritic spines in adult brain by regulating D-serine homeostasis</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Dynamic synapses facilitate activity‐dependent remodeling of neural circuits, thereby providing the structural substrate for adaptive behaviors. However, the mechanisms governing dynamic synapses in adult brain are still largely unknown. Here, we demonstrate that in the cortex of adult amyloid precursor protein knockout (APP‐KO) mice, spine formation and elimination were both reduced while overall spine density remained unaltered. When housed under environmental enrichment, APP‐KO mice failed to respond with an increase in spine density. Spine morphology was also altered in the absence of APP. The underlying mechanism of these spine abnormalities in APP‐KO mice was ascribed to an impairment in D‐serine homeostasis. Extracellular D‐serine concentration was significantly reduced in APP‐KO mice, coupled with an increase of total D‐serine. Strikingly, chronic treatment with exogenous D‐serine normalized D‐serine homeostasis and restored the deficits of spine dynamics, adaptive plasticity, and morphology in APP‐KO mice. The cognitive deficit observed in APP‐KO mice was also rescued by D‐serine treatment. These data suggest that APP regulates homeostasis of D‐serine, thereby maintaining the constitutive and adaptive plasticity of dendritic spines in adult brain.
Synopsis
The absence of APP in adult brain reduces dendritic spine dynamics and impairs structural spine plasticity, resulting in cognitive deficits on the consequence of disrupting D‐serine homeostasis.
In vivo
dynamics of dendritic spine formation and stabilization is reduced in the adult APP‐KO mouse brain.
Structural plasticity of dendritic spines, induced by environmental enrichment, is impaired in APP‐KO mice.
Dendritic spine morphology is accordingly changed in APP‐KO mice.
D‐serine homeostasis is disrupted in the absence of APP, which could be normalized by exogenous D‐serine treatment.
Chronic treatment with D‐serine restores the deficits on dendritic spines and cognitive performance of APP‐KO mice.
Graphical Abstract
Loss of APP in the adult brain impairs dendritic spine dynamics and plasticity leading to cognitive deficits.</description><subject>Amyloid beta-Protein Precursor - genetics</subject><subject>Amyloid beta-Protein Precursor - metabolism</subject><subject>amyloid precursor protein</subject><subject>Animals</subject><subject>Brain - metabolism</subject><subject>Cognition Disorders - metabolism</subject><subject>Cognitive ability</subject><subject>D-serine</subject><subject>dendritic spine</subject><subject>Dendritic Spines - metabolism</subject><subject>EMBO27</subject><subject>Female</subject><subject>Homeostasis</subject><subject>Mice, Knockout</subject><subject>microelectrode biosensor</subject><subject>Morphology</subject><subject>Neurology</subject><subject>Neuronal Plasticity</subject><subject>Plasticity</subject><subject>Proteins</subject><subject>Rodents</subject><subject>Serine - metabolism</subject><subject>Spine</subject><subject>spine plasticity</subject><subject>two-photon in vivo imaging</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkcFu1DAQhiMEokvhzA1Z4sIlre3ETsIBqSxlAW0LBxBHy7EnWy-JndpOYV-CZ8bbLasFCXGw7NH883lm_ix7SvAJYZTRUxja9QnFhDclrtm9bEZKjnOKK3Y_m2HKSV6SujnKHoWwxhizuiIPsyNasYqWvJhlP8-GTe-MRqMHNfngfHq5CMaiQRob0wlIORuiiVM0N4Ck1UhqOd4GYy9TRpm4Qa5DGqz2JsUojMZCQIki9dRH1PoEQu0GeVhNvYzGrtCbPIBPMnTlBnAhymDC4-xBJ_sAT-7u4-zL2_PP83f58uPi_fxsmSvGCMtrrnHDFJVcKi4lowpTWci2q1VdllpxpruC6VLVGoiudSMBF2VXcYVbqrkqjrNXO-44tQNoBTZ62YvRm0H6jXDSiD8z1lyJlbsRDPOGlXUCvLgDeHc9QYhiMEFB30sLbgqC1EXZNCztPkmf_yVdu8nbNN5WhTGpGNsCT3cq5V0IHrp9MwSLW6_F1mux9zpVPDucYa__bW4SvNwJvpseNv_jifOL1x8O6XhXHFKdXYE_6PqfDeW7EhMi_Nj_J_03wauiYuLr5UJcLtNiFhefxLz4BdCK2pc</recordid><startdate>20161017</startdate><enddate>20161017</enddate><creator>Zou, Chengyu</creator><creator>Crux, Sophie</creator><creator>Marinesco, Stephane</creator><creator>Montagna, Elena</creator><creator>Sgobio, Carmelo</creator><creator>Shi, Yuan</creator><creator>Shi, Song</creator><creator>Zhu, Kaichuan</creator><creator>Dorostkar, Mario M</creator><creator>Müller, Ulrike C</creator><creator>Herms, Jochen</creator><general>Blackwell Publishing Ltd</general><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>John Wiley and Sons Inc</general><scope>BSCLL</scope><scope>C6C</scope><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6201-1042</orcidid></search><sort><creationdate>20161017</creationdate><title>Amyloid precursor protein maintains constitutive and adaptive plasticity of dendritic spines in adult brain by regulating D-serine homeostasis</title><author>Zou, Chengyu ; Crux, Sophie ; Marinesco, Stephane ; Montagna, Elena ; Sgobio, Carmelo ; Shi, Yuan ; Shi, Song ; Zhu, Kaichuan ; Dorostkar, Mario M ; Müller, Ulrike C ; Herms, Jochen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5515-86d095c2a6ac6aa52c02a3abf8c844dc65df35d4c8de1d8d9ae034f76c0b2d6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amyloid beta-Protein Precursor - genetics</topic><topic>Amyloid beta-Protein Precursor - metabolism</topic><topic>amyloid precursor protein</topic><topic>Animals</topic><topic>Brain - metabolism</topic><topic>Cognition Disorders - metabolism</topic><topic>Cognitive ability</topic><topic>D-serine</topic><topic>dendritic spine</topic><topic>Dendritic Spines - metabolism</topic><topic>EMBO27</topic><topic>Female</topic><topic>Homeostasis</topic><topic>Mice, Knockout</topic><topic>microelectrode biosensor</topic><topic>Morphology</topic><topic>Neurology</topic><topic>Neuronal Plasticity</topic><topic>Plasticity</topic><topic>Proteins</topic><topic>Rodents</topic><topic>Serine - metabolism</topic><topic>Spine</topic><topic>spine plasticity</topic><topic>two-photon in vivo imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Chengyu</creatorcontrib><creatorcontrib>Crux, Sophie</creatorcontrib><creatorcontrib>Marinesco, Stephane</creatorcontrib><creatorcontrib>Montagna, Elena</creatorcontrib><creatorcontrib>Sgobio, Carmelo</creatorcontrib><creatorcontrib>Shi, Yuan</creatorcontrib><creatorcontrib>Shi, Song</creatorcontrib><creatorcontrib>Zhu, Kaichuan</creatorcontrib><creatorcontrib>Dorostkar, Mario M</creatorcontrib><creatorcontrib>Müller, Ulrike C</creatorcontrib><creatorcontrib>Herms, Jochen</creatorcontrib><collection>Istex</collection><collection>Springer Nature OA Free Journals</collection><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Chengyu</au><au>Crux, Sophie</au><au>Marinesco, Stephane</au><au>Montagna, Elena</au><au>Sgobio, Carmelo</au><au>Shi, Yuan</au><au>Shi, Song</au><au>Zhu, Kaichuan</au><au>Dorostkar, Mario M</au><au>Müller, Ulrike C</au><au>Herms, Jochen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amyloid precursor protein maintains constitutive and adaptive plasticity of dendritic spines in adult brain by regulating D-serine homeostasis</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2016-10-17</date><risdate>2016</risdate><volume>35</volume><issue>20</issue><spage>2213</spage><epage>2222</epage><pages>2213-2222</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Dynamic synapses facilitate activity‐dependent remodeling of neural circuits, thereby providing the structural substrate for adaptive behaviors. However, the mechanisms governing dynamic synapses in adult brain are still largely unknown. Here, we demonstrate that in the cortex of adult amyloid precursor protein knockout (APP‐KO) mice, spine formation and elimination were both reduced while overall spine density remained unaltered. When housed under environmental enrichment, APP‐KO mice failed to respond with an increase in spine density. Spine morphology was also altered in the absence of APP. The underlying mechanism of these spine abnormalities in APP‐KO mice was ascribed to an impairment in D‐serine homeostasis. Extracellular D‐serine concentration was significantly reduced in APP‐KO mice, coupled with an increase of total D‐serine. Strikingly, chronic treatment with exogenous D‐serine normalized D‐serine homeostasis and restored the deficits of spine dynamics, adaptive plasticity, and morphology in APP‐KO mice. The cognitive deficit observed in APP‐KO mice was also rescued by D‐serine treatment. These data suggest that APP regulates homeostasis of D‐serine, thereby maintaining the constitutive and adaptive plasticity of dendritic spines in adult brain.
Synopsis
The absence of APP in adult brain reduces dendritic spine dynamics and impairs structural spine plasticity, resulting in cognitive deficits on the consequence of disrupting D‐serine homeostasis.
In vivo
dynamics of dendritic spine formation and stabilization is reduced in the adult APP‐KO mouse brain.
Structural plasticity of dendritic spines, induced by environmental enrichment, is impaired in APP‐KO mice.
Dendritic spine morphology is accordingly changed in APP‐KO mice.
D‐serine homeostasis is disrupted in the absence of APP, which could be normalized by exogenous D‐serine treatment.
Chronic treatment with D‐serine restores the deficits on dendritic spines and cognitive performance of APP‐KO mice.
Graphical Abstract
Loss of APP in the adult brain impairs dendritic spine dynamics and plasticity leading to cognitive deficits.</abstract><cop>London</cop><pub>Blackwell Publishing Ltd</pub><pmid>27572463</pmid><doi>10.15252/embj.201694085</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6201-1042</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2016-10, Vol.35 (20), p.2213-2222 |
issn | 0261-4189 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5069548 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | Amyloid beta-Protein Precursor - genetics Amyloid beta-Protein Precursor - metabolism amyloid precursor protein Animals Brain - metabolism Cognition Disorders - metabolism Cognitive ability D-serine dendritic spine Dendritic Spines - metabolism EMBO27 Female Homeostasis Mice, Knockout microelectrode biosensor Morphology Neurology Neuronal Plasticity Plasticity Proteins Rodents Serine - metabolism Spine spine plasticity two-photon in vivo imaging |
title | Amyloid precursor protein maintains constitutive and adaptive plasticity of dendritic spines in adult brain by regulating D-serine homeostasis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T16%3A20%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amyloid%20precursor%20protein%20maintains%20constitutive%20and%20adaptive%20plasticity%20of%20dendritic%20spines%20in%20adult%20brain%20by%20regulating%20D-serine%20homeostasis&rft.jtitle=The%20EMBO%20journal&rft.au=Zou,%20Chengyu&rft.date=2016-10-17&rft.volume=35&rft.issue=20&rft.spage=2213&rft.epage=2222&rft.pages=2213-2222&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.15252/embj.201694085&rft_dat=%3Cproquest_pubme%3E4218969541%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1830017558&rft_id=info:pmid/27572463&rfr_iscdi=true |