Amyloid precursor protein maintains constitutive and adaptive plasticity of dendritic spines in adult brain by regulating D-serine homeostasis

Dynamic synapses facilitate activity‐dependent remodeling of neural circuits, thereby providing the structural substrate for adaptive behaviors. However, the mechanisms governing dynamic synapses in adult brain are still largely unknown. Here, we demonstrate that in the cortex of adult amyloid precu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2016-10, Vol.35 (20), p.2213-2222
Hauptverfasser: Zou, Chengyu, Crux, Sophie, Marinesco, Stephane, Montagna, Elena, Sgobio, Carmelo, Shi, Yuan, Shi, Song, Zhu, Kaichuan, Dorostkar, Mario M, Müller, Ulrike C, Herms, Jochen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2222
container_issue 20
container_start_page 2213
container_title The EMBO journal
container_volume 35
creator Zou, Chengyu
Crux, Sophie
Marinesco, Stephane
Montagna, Elena
Sgobio, Carmelo
Shi, Yuan
Shi, Song
Zhu, Kaichuan
Dorostkar, Mario M
Müller, Ulrike C
Herms, Jochen
description Dynamic synapses facilitate activity‐dependent remodeling of neural circuits, thereby providing the structural substrate for adaptive behaviors. However, the mechanisms governing dynamic synapses in adult brain are still largely unknown. Here, we demonstrate that in the cortex of adult amyloid precursor protein knockout (APP‐KO) mice, spine formation and elimination were both reduced while overall spine density remained unaltered. When housed under environmental enrichment, APP‐KO mice failed to respond with an increase in spine density. Spine morphology was also altered in the absence of APP. The underlying mechanism of these spine abnormalities in APP‐KO mice was ascribed to an impairment in D‐serine homeostasis. Extracellular D‐serine concentration was significantly reduced in APP‐KO mice, coupled with an increase of total D‐serine. Strikingly, chronic treatment with exogenous D‐serine normalized D‐serine homeostasis and restored the deficits of spine dynamics, adaptive plasticity, and morphology in APP‐KO mice. The cognitive deficit observed in APP‐KO mice was also rescued by D‐serine treatment. These data suggest that APP regulates homeostasis of D‐serine, thereby maintaining the constitutive and adaptive plasticity of dendritic spines in adult brain. Synopsis The absence of APP in adult brain reduces dendritic spine dynamics and impairs structural spine plasticity, resulting in cognitive deficits on the consequence of disrupting D‐serine homeostasis. In vivo dynamics of dendritic spine formation and stabilization is reduced in the adult APP‐KO mouse brain. Structural plasticity of dendritic spines, induced by environmental enrichment, is impaired in APP‐KO mice. Dendritic spine morphology is accordingly changed in APP‐KO mice. D‐serine homeostasis is disrupted in the absence of APP, which could be normalized by exogenous D‐serine treatment. Chronic treatment with D‐serine restores the deficits on dendritic spines and cognitive performance of APP‐KO mice. Graphical Abstract Loss of APP in the adult brain impairs dendritic spine dynamics and plasticity leading to cognitive deficits.
doi_str_mv 10.15252/embj.201694085
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5069548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4218969541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5515-86d095c2a6ac6aa52c02a3abf8c844dc65df35d4c8de1d8d9ae034f76c0b2d6c3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhiMEokvhzA1Z4sIlre3ETsIBqSxlAW0LBxBHy7EnWy-JndpOYV-CZ8bbLasFCXGw7NH883lm_ix7SvAJYZTRUxja9QnFhDclrtm9bEZKjnOKK3Y_m2HKSV6SujnKHoWwxhizuiIPsyNasYqWvJhlP8-GTe-MRqMHNfngfHq5CMaiQRob0wlIORuiiVM0N4Ck1UhqOd4GYy9TRpm4Qa5DGqz2JsUojMZCQIki9dRH1PoEQu0GeVhNvYzGrtCbPIBPMnTlBnAhymDC4-xBJ_sAT-7u4-zL2_PP83f58uPi_fxsmSvGCMtrrnHDFJVcKi4lowpTWci2q1VdllpxpruC6VLVGoiudSMBF2VXcYVbqrkqjrNXO-44tQNoBTZ62YvRm0H6jXDSiD8z1lyJlbsRDPOGlXUCvLgDeHc9QYhiMEFB30sLbgqC1EXZNCztPkmf_yVdu8nbNN5WhTGpGNsCT3cq5V0IHrp9MwSLW6_F1mux9zpVPDucYa__bW4SvNwJvpseNv_jifOL1x8O6XhXHFKdXYE_6PqfDeW7EhMi_Nj_J_03wauiYuLr5UJcLtNiFhefxLz4BdCK2pc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1830017558</pqid></control><display><type>article</type><title>Amyloid precursor protein maintains constitutive and adaptive plasticity of dendritic spines in adult brain by regulating D-serine homeostasis</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Zou, Chengyu ; Crux, Sophie ; Marinesco, Stephane ; Montagna, Elena ; Sgobio, Carmelo ; Shi, Yuan ; Shi, Song ; Zhu, Kaichuan ; Dorostkar, Mario M ; Müller, Ulrike C ; Herms, Jochen</creator><creatorcontrib>Zou, Chengyu ; Crux, Sophie ; Marinesco, Stephane ; Montagna, Elena ; Sgobio, Carmelo ; Shi, Yuan ; Shi, Song ; Zhu, Kaichuan ; Dorostkar, Mario M ; Müller, Ulrike C ; Herms, Jochen</creatorcontrib><description>Dynamic synapses facilitate activity‐dependent remodeling of neural circuits, thereby providing the structural substrate for adaptive behaviors. However, the mechanisms governing dynamic synapses in adult brain are still largely unknown. Here, we demonstrate that in the cortex of adult amyloid precursor protein knockout (APP‐KO) mice, spine formation and elimination were both reduced while overall spine density remained unaltered. When housed under environmental enrichment, APP‐KO mice failed to respond with an increase in spine density. Spine morphology was also altered in the absence of APP. The underlying mechanism of these spine abnormalities in APP‐KO mice was ascribed to an impairment in D‐serine homeostasis. Extracellular D‐serine concentration was significantly reduced in APP‐KO mice, coupled with an increase of total D‐serine. Strikingly, chronic treatment with exogenous D‐serine normalized D‐serine homeostasis and restored the deficits of spine dynamics, adaptive plasticity, and morphology in APP‐KO mice. The cognitive deficit observed in APP‐KO mice was also rescued by D‐serine treatment. These data suggest that APP regulates homeostasis of D‐serine, thereby maintaining the constitutive and adaptive plasticity of dendritic spines in adult brain. Synopsis The absence of APP in adult brain reduces dendritic spine dynamics and impairs structural spine plasticity, resulting in cognitive deficits on the consequence of disrupting D‐serine homeostasis. In vivo dynamics of dendritic spine formation and stabilization is reduced in the adult APP‐KO mouse brain. Structural plasticity of dendritic spines, induced by environmental enrichment, is impaired in APP‐KO mice. Dendritic spine morphology is accordingly changed in APP‐KO mice. D‐serine homeostasis is disrupted in the absence of APP, which could be normalized by exogenous D‐serine treatment. Chronic treatment with D‐serine restores the deficits on dendritic spines and cognitive performance of APP‐KO mice. Graphical Abstract Loss of APP in the adult brain impairs dendritic spine dynamics and plasticity leading to cognitive deficits.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.201694085</identifier><identifier>PMID: 27572463</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>London: Blackwell Publishing Ltd</publisher><subject>Amyloid beta-Protein Precursor - genetics ; Amyloid beta-Protein Precursor - metabolism ; amyloid precursor protein ; Animals ; Brain - metabolism ; Cognition Disorders - metabolism ; Cognitive ability ; D-serine ; dendritic spine ; Dendritic Spines - metabolism ; EMBO27 ; Female ; Homeostasis ; Mice, Knockout ; microelectrode biosensor ; Morphology ; Neurology ; Neuronal Plasticity ; Plasticity ; Proteins ; Rodents ; Serine - metabolism ; Spine ; spine plasticity ; two-photon in vivo imaging</subject><ispartof>The EMBO journal, 2016-10, Vol.35 (20), p.2213-2222</ispartof><rights>The Author(s) 2016</rights><rights>2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license</rights><rights>2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.</rights><rights>2016 EMBO</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5515-86d095c2a6ac6aa52c02a3abf8c844dc65df35d4c8de1d8d9ae034f76c0b2d6c3</citedby><cites>FETCH-LOGICAL-c5515-86d095c2a6ac6aa52c02a3abf8c844dc65df35d4c8de1d8d9ae034f76c0b2d6c3</cites><orcidid>0000-0002-6201-1042</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5069548/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5069548/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27572463$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zou, Chengyu</creatorcontrib><creatorcontrib>Crux, Sophie</creatorcontrib><creatorcontrib>Marinesco, Stephane</creatorcontrib><creatorcontrib>Montagna, Elena</creatorcontrib><creatorcontrib>Sgobio, Carmelo</creatorcontrib><creatorcontrib>Shi, Yuan</creatorcontrib><creatorcontrib>Shi, Song</creatorcontrib><creatorcontrib>Zhu, Kaichuan</creatorcontrib><creatorcontrib>Dorostkar, Mario M</creatorcontrib><creatorcontrib>Müller, Ulrike C</creatorcontrib><creatorcontrib>Herms, Jochen</creatorcontrib><title>Amyloid precursor protein maintains constitutive and adaptive plasticity of dendritic spines in adult brain by regulating D-serine homeostasis</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Dynamic synapses facilitate activity‐dependent remodeling of neural circuits, thereby providing the structural substrate for adaptive behaviors. However, the mechanisms governing dynamic synapses in adult brain are still largely unknown. Here, we demonstrate that in the cortex of adult amyloid precursor protein knockout (APP‐KO) mice, spine formation and elimination were both reduced while overall spine density remained unaltered. When housed under environmental enrichment, APP‐KO mice failed to respond with an increase in spine density. Spine morphology was also altered in the absence of APP. The underlying mechanism of these spine abnormalities in APP‐KO mice was ascribed to an impairment in D‐serine homeostasis. Extracellular D‐serine concentration was significantly reduced in APP‐KO mice, coupled with an increase of total D‐serine. Strikingly, chronic treatment with exogenous D‐serine normalized D‐serine homeostasis and restored the deficits of spine dynamics, adaptive plasticity, and morphology in APP‐KO mice. The cognitive deficit observed in APP‐KO mice was also rescued by D‐serine treatment. These data suggest that APP regulates homeostasis of D‐serine, thereby maintaining the constitutive and adaptive plasticity of dendritic spines in adult brain. Synopsis The absence of APP in adult brain reduces dendritic spine dynamics and impairs structural spine plasticity, resulting in cognitive deficits on the consequence of disrupting D‐serine homeostasis. In vivo dynamics of dendritic spine formation and stabilization is reduced in the adult APP‐KO mouse brain. Structural plasticity of dendritic spines, induced by environmental enrichment, is impaired in APP‐KO mice. Dendritic spine morphology is accordingly changed in APP‐KO mice. D‐serine homeostasis is disrupted in the absence of APP, which could be normalized by exogenous D‐serine treatment. Chronic treatment with D‐serine restores the deficits on dendritic spines and cognitive performance of APP‐KO mice. Graphical Abstract Loss of APP in the adult brain impairs dendritic spine dynamics and plasticity leading to cognitive deficits.</description><subject>Amyloid beta-Protein Precursor - genetics</subject><subject>Amyloid beta-Protein Precursor - metabolism</subject><subject>amyloid precursor protein</subject><subject>Animals</subject><subject>Brain - metabolism</subject><subject>Cognition Disorders - metabolism</subject><subject>Cognitive ability</subject><subject>D-serine</subject><subject>dendritic spine</subject><subject>Dendritic Spines - metabolism</subject><subject>EMBO27</subject><subject>Female</subject><subject>Homeostasis</subject><subject>Mice, Knockout</subject><subject>microelectrode biosensor</subject><subject>Morphology</subject><subject>Neurology</subject><subject>Neuronal Plasticity</subject><subject>Plasticity</subject><subject>Proteins</subject><subject>Rodents</subject><subject>Serine - metabolism</subject><subject>Spine</subject><subject>spine plasticity</subject><subject>two-photon in vivo imaging</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkcFu1DAQhiMEokvhzA1Z4sIlre3ETsIBqSxlAW0LBxBHy7EnWy-JndpOYV-CZ8bbLasFCXGw7NH883lm_ix7SvAJYZTRUxja9QnFhDclrtm9bEZKjnOKK3Y_m2HKSV6SujnKHoWwxhizuiIPsyNasYqWvJhlP8-GTe-MRqMHNfngfHq5CMaiQRob0wlIORuiiVM0N4Ck1UhqOd4GYy9TRpm4Qa5DGqz2JsUojMZCQIki9dRH1PoEQu0GeVhNvYzGrtCbPIBPMnTlBnAhymDC4-xBJ_sAT-7u4-zL2_PP83f58uPi_fxsmSvGCMtrrnHDFJVcKi4lowpTWci2q1VdllpxpruC6VLVGoiudSMBF2VXcYVbqrkqjrNXO-44tQNoBTZ62YvRm0H6jXDSiD8z1lyJlbsRDPOGlXUCvLgDeHc9QYhiMEFB30sLbgqC1EXZNCztPkmf_yVdu8nbNN5WhTGpGNsCT3cq5V0IHrp9MwSLW6_F1mux9zpVPDucYa__bW4SvNwJvpseNv_jifOL1x8O6XhXHFKdXYE_6PqfDeW7EhMi_Nj_J_03wauiYuLr5UJcLtNiFhefxLz4BdCK2pc</recordid><startdate>20161017</startdate><enddate>20161017</enddate><creator>Zou, Chengyu</creator><creator>Crux, Sophie</creator><creator>Marinesco, Stephane</creator><creator>Montagna, Elena</creator><creator>Sgobio, Carmelo</creator><creator>Shi, Yuan</creator><creator>Shi, Song</creator><creator>Zhu, Kaichuan</creator><creator>Dorostkar, Mario M</creator><creator>Müller, Ulrike C</creator><creator>Herms, Jochen</creator><general>Blackwell Publishing Ltd</general><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>John Wiley and Sons Inc</general><scope>BSCLL</scope><scope>C6C</scope><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6201-1042</orcidid></search><sort><creationdate>20161017</creationdate><title>Amyloid precursor protein maintains constitutive and adaptive plasticity of dendritic spines in adult brain by regulating D-serine homeostasis</title><author>Zou, Chengyu ; Crux, Sophie ; Marinesco, Stephane ; Montagna, Elena ; Sgobio, Carmelo ; Shi, Yuan ; Shi, Song ; Zhu, Kaichuan ; Dorostkar, Mario M ; Müller, Ulrike C ; Herms, Jochen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5515-86d095c2a6ac6aa52c02a3abf8c844dc65df35d4c8de1d8d9ae034f76c0b2d6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amyloid beta-Protein Precursor - genetics</topic><topic>Amyloid beta-Protein Precursor - metabolism</topic><topic>amyloid precursor protein</topic><topic>Animals</topic><topic>Brain - metabolism</topic><topic>Cognition Disorders - metabolism</topic><topic>Cognitive ability</topic><topic>D-serine</topic><topic>dendritic spine</topic><topic>Dendritic Spines - metabolism</topic><topic>EMBO27</topic><topic>Female</topic><topic>Homeostasis</topic><topic>Mice, Knockout</topic><topic>microelectrode biosensor</topic><topic>Morphology</topic><topic>Neurology</topic><topic>Neuronal Plasticity</topic><topic>Plasticity</topic><topic>Proteins</topic><topic>Rodents</topic><topic>Serine - metabolism</topic><topic>Spine</topic><topic>spine plasticity</topic><topic>two-photon in vivo imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Chengyu</creatorcontrib><creatorcontrib>Crux, Sophie</creatorcontrib><creatorcontrib>Marinesco, Stephane</creatorcontrib><creatorcontrib>Montagna, Elena</creatorcontrib><creatorcontrib>Sgobio, Carmelo</creatorcontrib><creatorcontrib>Shi, Yuan</creatorcontrib><creatorcontrib>Shi, Song</creatorcontrib><creatorcontrib>Zhu, Kaichuan</creatorcontrib><creatorcontrib>Dorostkar, Mario M</creatorcontrib><creatorcontrib>Müller, Ulrike C</creatorcontrib><creatorcontrib>Herms, Jochen</creatorcontrib><collection>Istex</collection><collection>Springer Nature OA Free Journals</collection><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Chengyu</au><au>Crux, Sophie</au><au>Marinesco, Stephane</au><au>Montagna, Elena</au><au>Sgobio, Carmelo</au><au>Shi, Yuan</au><au>Shi, Song</au><au>Zhu, Kaichuan</au><au>Dorostkar, Mario M</au><au>Müller, Ulrike C</au><au>Herms, Jochen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amyloid precursor protein maintains constitutive and adaptive plasticity of dendritic spines in adult brain by regulating D-serine homeostasis</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2016-10-17</date><risdate>2016</risdate><volume>35</volume><issue>20</issue><spage>2213</spage><epage>2222</epage><pages>2213-2222</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Dynamic synapses facilitate activity‐dependent remodeling of neural circuits, thereby providing the structural substrate for adaptive behaviors. However, the mechanisms governing dynamic synapses in adult brain are still largely unknown. Here, we demonstrate that in the cortex of adult amyloid precursor protein knockout (APP‐KO) mice, spine formation and elimination were both reduced while overall spine density remained unaltered. When housed under environmental enrichment, APP‐KO mice failed to respond with an increase in spine density. Spine morphology was also altered in the absence of APP. The underlying mechanism of these spine abnormalities in APP‐KO mice was ascribed to an impairment in D‐serine homeostasis. Extracellular D‐serine concentration was significantly reduced in APP‐KO mice, coupled with an increase of total D‐serine. Strikingly, chronic treatment with exogenous D‐serine normalized D‐serine homeostasis and restored the deficits of spine dynamics, adaptive plasticity, and morphology in APP‐KO mice. The cognitive deficit observed in APP‐KO mice was also rescued by D‐serine treatment. These data suggest that APP regulates homeostasis of D‐serine, thereby maintaining the constitutive and adaptive plasticity of dendritic spines in adult brain. Synopsis The absence of APP in adult brain reduces dendritic spine dynamics and impairs structural spine plasticity, resulting in cognitive deficits on the consequence of disrupting D‐serine homeostasis. In vivo dynamics of dendritic spine formation and stabilization is reduced in the adult APP‐KO mouse brain. Structural plasticity of dendritic spines, induced by environmental enrichment, is impaired in APP‐KO mice. Dendritic spine morphology is accordingly changed in APP‐KO mice. D‐serine homeostasis is disrupted in the absence of APP, which could be normalized by exogenous D‐serine treatment. Chronic treatment with D‐serine restores the deficits on dendritic spines and cognitive performance of APP‐KO mice. Graphical Abstract Loss of APP in the adult brain impairs dendritic spine dynamics and plasticity leading to cognitive deficits.</abstract><cop>London</cop><pub>Blackwell Publishing Ltd</pub><pmid>27572463</pmid><doi>10.15252/embj.201694085</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6201-1042</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2016-10, Vol.35 (20), p.2213-2222
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5069548
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects Amyloid beta-Protein Precursor - genetics
Amyloid beta-Protein Precursor - metabolism
amyloid precursor protein
Animals
Brain - metabolism
Cognition Disorders - metabolism
Cognitive ability
D-serine
dendritic spine
Dendritic Spines - metabolism
EMBO27
Female
Homeostasis
Mice, Knockout
microelectrode biosensor
Morphology
Neurology
Neuronal Plasticity
Plasticity
Proteins
Rodents
Serine - metabolism
Spine
spine plasticity
two-photon in vivo imaging
title Amyloid precursor protein maintains constitutive and adaptive plasticity of dendritic spines in adult brain by regulating D-serine homeostasis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T16%3A20%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amyloid%20precursor%20protein%20maintains%20constitutive%20and%20adaptive%20plasticity%20of%20dendritic%20spines%20in%20adult%20brain%20by%20regulating%20D-serine%20homeostasis&rft.jtitle=The%20EMBO%20journal&rft.au=Zou,%20Chengyu&rft.date=2016-10-17&rft.volume=35&rft.issue=20&rft.spage=2213&rft.epage=2222&rft.pages=2213-2222&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.15252/embj.201694085&rft_dat=%3Cproquest_pubme%3E4218969541%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1830017558&rft_id=info:pmid/27572463&rfr_iscdi=true