A ring-shaped conduit connects the mother cell and forespore during sporulation in Bacillus subtilis
During spore formation in Bacillus subtilis a transenvelope complex is assembled across the double membrane that separates the mother cell and forespore. This complex (called the “A–Q complex”) is required to maintain forespore development and is composed of proteins with remote homology to componen...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2016-10, Vol.113 (41), p.11585-11590 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11590 |
---|---|
container_issue | 41 |
container_start_page | 11585 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 113 |
creator | Rodrigues, Christopher D. A. Henry, Xavier Neumann, Emmanuelle Kurauskas, Vilius Bellard, Laure Fichou, Yann Schanda, Paul Schoehn, Guy Rudner, David Z. Morlot, Cecile |
description | During spore formation in Bacillus subtilis a transenvelope complex is assembled across the double membrane that separates the mother cell and forespore. This complex (called the “A–Q complex”) is required to maintain forespore development and is composed of proteins with remote homology to components of type II, III, and IV secretion systems found in Gram-negative bacteria. Here, we show that one of these proteins, SpoIIIAG, which has remote homology to ring-forming proteins found in type III secretion systems, assembles into an oligomeric ring in the periplasmic-like space between the two membranes. Three-dimensional reconstruction of images generated by cryo-electron microscopy indicates that the SpoIIIAG ring has a cup-and-saucer architecture with a 6-nm central pore. Structural modeling of SpoIIIAG generated a 24-member ring with dimensions similar to those of the EM-derived saucer. Point mutations in the predicted oligomeric interface disrupted ring formation in vitro and impaired forespore gene expression and efficient spore formation in vivo. Taken together, our data provide strong support for the model in which the A–Q transenvelope complex contains a conduit that connects the mother cell and forespore. We propose that a set of stacked rings spans the intermembrane space, as has been found for type III secretion systems. |
doi_str_mv | 10.1073/pnas.1609604113 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5068255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26472021</jstor_id><sourcerecordid>26472021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-762b677d6edead9daee4543a3463ec8af723693852baf67b3485257a63e132203</originalsourceid><addsrcrecordid>eNqNkj1vFDEQhi0EIpdATQWyRBOKTcbf3ibSEQFBOokGasu79uZ82rMPezcS_x6vLiSQisZj-33mtWc0CL0hcEFAsctDtOWCSGglcELYM7Qi0JJG8haeoxUAVY3mlJ-g01J2ANAKDS_RCVVSE0nJCrk1ziHeNmVrD97hPkU3h2mJ0fdTwdPW432qa8a9H0dso8NDyr4c6oLdvCTj5TCPdgop4hDxR9uHcZwLLnM3hTGUV-jFYMfiX9_HM_Tj86fv1zfN5tuXr9frTdMLAlOjJO2kUk56561rnfWeC84s45L5XttBUSZbpgXt7CBVx3jdCmWrShilwM7Q1dH3MHd773ofp2xHc8hhb_Mvk2ww_yoxbM1tujMCpKZCVIMPR4Ptk7Sb9cYsd0CY0qzVd6Sy5_eP5fRz9mUy-1CWHtno01wM0VxyqDXBf6CMty2t9VT0_RN0l-Yca9cWirZCaLIYXh6pPqdSsh8ePkvALINhlsEwj4NRM9793ZoH_s8kVODtEdiVKeVHXXJFoeq_ASUSvbo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1832955810</pqid></control><display><type>article</type><title>A ring-shaped conduit connects the mother cell and forespore during sporulation in Bacillus subtilis</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Rodrigues, Christopher D. A. ; Henry, Xavier ; Neumann, Emmanuelle ; Kurauskas, Vilius ; Bellard, Laure ; Fichou, Yann ; Schanda, Paul ; Schoehn, Guy ; Rudner, David Z. ; Morlot, Cecile</creator><creatorcontrib>Rodrigues, Christopher D. A. ; Henry, Xavier ; Neumann, Emmanuelle ; Kurauskas, Vilius ; Bellard, Laure ; Fichou, Yann ; Schanda, Paul ; Schoehn, Guy ; Rudner, David Z. ; Morlot, Cecile</creatorcontrib><description>During spore formation in Bacillus subtilis a transenvelope complex is assembled across the double membrane that separates the mother cell and forespore. This complex (called the “A–Q complex”) is required to maintain forespore development and is composed of proteins with remote homology to components of type II, III, and IV secretion systems found in Gram-negative bacteria. Here, we show that one of these proteins, SpoIIIAG, which has remote homology to ring-forming proteins found in type III secretion systems, assembles into an oligomeric ring in the periplasmic-like space between the two membranes. Three-dimensional reconstruction of images generated by cryo-electron microscopy indicates that the SpoIIIAG ring has a cup-and-saucer architecture with a 6-nm central pore. Structural modeling of SpoIIIAG generated a 24-member ring with dimensions similar to those of the EM-derived saucer. Point mutations in the predicted oligomeric interface disrupted ring formation in vitro and impaired forespore gene expression and efficient spore formation in vivo. Taken together, our data provide strong support for the model in which the A–Q transenvelope complex contains a conduit that connects the mother cell and forespore. We propose that a set of stacked rings spans the intermembrane space, as has been found for type III secretion systems.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1609604113</identifier><identifier>PMID: 27681621</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; Bacillus subtilis - cytology ; Bacillus subtilis - physiology ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biochemistry, Molecular Biology ; Biological Sciences ; Computer Simulation ; Cryoelectron Microscopy ; Gene expression ; Gram-negative bacteria ; Imaging, Three-Dimensional ; Life Sciences ; Magnetic Resonance Spectroscopy ; Membranes ; Models, Molecular ; Mutation - genetics ; Operon - genetics ; Protein Domains ; Proteins ; Sequence Homology, Amino Acid ; Spores, Bacterial - cytology ; Spores, Bacterial - physiology ; Structural Biology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-10, Vol.113 (41), p.11585-11590</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Oct 11, 2016</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-762b677d6edead9daee4543a3463ec8af723693852baf67b3485257a63e132203</citedby><cites>FETCH-LOGICAL-c510t-762b677d6edead9daee4543a3463ec8af723693852baf67b3485257a63e132203</cites><orcidid>0000-0002-1459-3201 ; 0000-0002-9295-1035 ; 0000-0002-6520-0041 ; 0000-0002-9350-7606</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26472021$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26472021$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27681621$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-grenoble-alpes.fr/hal-01378398$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodrigues, Christopher D. A.</creatorcontrib><creatorcontrib>Henry, Xavier</creatorcontrib><creatorcontrib>Neumann, Emmanuelle</creatorcontrib><creatorcontrib>Kurauskas, Vilius</creatorcontrib><creatorcontrib>Bellard, Laure</creatorcontrib><creatorcontrib>Fichou, Yann</creatorcontrib><creatorcontrib>Schanda, Paul</creatorcontrib><creatorcontrib>Schoehn, Guy</creatorcontrib><creatorcontrib>Rudner, David Z.</creatorcontrib><creatorcontrib>Morlot, Cecile</creatorcontrib><title>A ring-shaped conduit connects the mother cell and forespore during sporulation in Bacillus subtilis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>During spore formation in Bacillus subtilis a transenvelope complex is assembled across the double membrane that separates the mother cell and forespore. This complex (called the “A–Q complex”) is required to maintain forespore development and is composed of proteins with remote homology to components of type II, III, and IV secretion systems found in Gram-negative bacteria. Here, we show that one of these proteins, SpoIIIAG, which has remote homology to ring-forming proteins found in type III secretion systems, assembles into an oligomeric ring in the periplasmic-like space between the two membranes. Three-dimensional reconstruction of images generated by cryo-electron microscopy indicates that the SpoIIIAG ring has a cup-and-saucer architecture with a 6-nm central pore. Structural modeling of SpoIIIAG generated a 24-member ring with dimensions similar to those of the EM-derived saucer. Point mutations in the predicted oligomeric interface disrupted ring formation in vitro and impaired forespore gene expression and efficient spore formation in vivo. Taken together, our data provide strong support for the model in which the A–Q transenvelope complex contains a conduit that connects the mother cell and forespore. We propose that a set of stacked rings spans the intermembrane space, as has been found for type III secretion systems.</description><subject>Amino Acid Sequence</subject><subject>Bacillus subtilis - cytology</subject><subject>Bacillus subtilis - physiology</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological Sciences</subject><subject>Computer Simulation</subject><subject>Cryoelectron Microscopy</subject><subject>Gene expression</subject><subject>Gram-negative bacteria</subject><subject>Imaging, Three-Dimensional</subject><subject>Life Sciences</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Membranes</subject><subject>Models, Molecular</subject><subject>Mutation - genetics</subject><subject>Operon - genetics</subject><subject>Protein Domains</subject><subject>Proteins</subject><subject>Sequence Homology, Amino Acid</subject><subject>Spores, Bacterial - cytology</subject><subject>Spores, Bacterial - physiology</subject><subject>Structural Biology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkj1vFDEQhi0EIpdATQWyRBOKTcbf3ibSEQFBOokGasu79uZ82rMPezcS_x6vLiSQisZj-33mtWc0CL0hcEFAsctDtOWCSGglcELYM7Qi0JJG8haeoxUAVY3mlJ-g01J2ANAKDS_RCVVSE0nJCrk1ziHeNmVrD97hPkU3h2mJ0fdTwdPW432qa8a9H0dso8NDyr4c6oLdvCTj5TCPdgop4hDxR9uHcZwLLnM3hTGUV-jFYMfiX9_HM_Tj86fv1zfN5tuXr9frTdMLAlOjJO2kUk56561rnfWeC84s45L5XttBUSZbpgXt7CBVx3jdCmWrShilwM7Q1dH3MHd773ofp2xHc8hhb_Mvk2ww_yoxbM1tujMCpKZCVIMPR4Ptk7Sb9cYsd0CY0qzVd6Sy5_eP5fRz9mUy-1CWHtno01wM0VxyqDXBf6CMty2t9VT0_RN0l-Yca9cWirZCaLIYXh6pPqdSsh8ePkvALINhlsEwj4NRM9793ZoH_s8kVODtEdiVKeVHXXJFoeq_ASUSvbo</recordid><startdate>20161011</startdate><enddate>20161011</enddate><creator>Rodrigues, Christopher D. A.</creator><creator>Henry, Xavier</creator><creator>Neumann, Emmanuelle</creator><creator>Kurauskas, Vilius</creator><creator>Bellard, Laure</creator><creator>Fichou, Yann</creator><creator>Schanda, Paul</creator><creator>Schoehn, Guy</creator><creator>Rudner, David Z.</creator><creator>Morlot, Cecile</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1459-3201</orcidid><orcidid>https://orcid.org/0000-0002-9295-1035</orcidid><orcidid>https://orcid.org/0000-0002-6520-0041</orcidid><orcidid>https://orcid.org/0000-0002-9350-7606</orcidid></search><sort><creationdate>20161011</creationdate><title>A ring-shaped conduit connects the mother cell and forespore during sporulation in Bacillus subtilis</title><author>Rodrigues, Christopher D. A. ; Henry, Xavier ; Neumann, Emmanuelle ; Kurauskas, Vilius ; Bellard, Laure ; Fichou, Yann ; Schanda, Paul ; Schoehn, Guy ; Rudner, David Z. ; Morlot, Cecile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-762b677d6edead9daee4543a3463ec8af723693852baf67b3485257a63e132203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino Acid Sequence</topic><topic>Bacillus subtilis - cytology</topic><topic>Bacillus subtilis - physiology</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological Sciences</topic><topic>Computer Simulation</topic><topic>Cryoelectron Microscopy</topic><topic>Gene expression</topic><topic>Gram-negative bacteria</topic><topic>Imaging, Three-Dimensional</topic><topic>Life Sciences</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Membranes</topic><topic>Models, Molecular</topic><topic>Mutation - genetics</topic><topic>Operon - genetics</topic><topic>Protein Domains</topic><topic>Proteins</topic><topic>Sequence Homology, Amino Acid</topic><topic>Spores, Bacterial - cytology</topic><topic>Spores, Bacterial - physiology</topic><topic>Structural Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodrigues, Christopher D. A.</creatorcontrib><creatorcontrib>Henry, Xavier</creatorcontrib><creatorcontrib>Neumann, Emmanuelle</creatorcontrib><creatorcontrib>Kurauskas, Vilius</creatorcontrib><creatorcontrib>Bellard, Laure</creatorcontrib><creatorcontrib>Fichou, Yann</creatorcontrib><creatorcontrib>Schanda, Paul</creatorcontrib><creatorcontrib>Schoehn, Guy</creatorcontrib><creatorcontrib>Rudner, David Z.</creatorcontrib><creatorcontrib>Morlot, Cecile</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodrigues, Christopher D. A.</au><au>Henry, Xavier</au><au>Neumann, Emmanuelle</au><au>Kurauskas, Vilius</au><au>Bellard, Laure</au><au>Fichou, Yann</au><au>Schanda, Paul</au><au>Schoehn, Guy</au><au>Rudner, David Z.</au><au>Morlot, Cecile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A ring-shaped conduit connects the mother cell and forespore during sporulation in Bacillus subtilis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-10-11</date><risdate>2016</risdate><volume>113</volume><issue>41</issue><spage>11585</spage><epage>11590</epage><pages>11585-11590</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>During spore formation in Bacillus subtilis a transenvelope complex is assembled across the double membrane that separates the mother cell and forespore. This complex (called the “A–Q complex”) is required to maintain forespore development and is composed of proteins with remote homology to components of type II, III, and IV secretion systems found in Gram-negative bacteria. Here, we show that one of these proteins, SpoIIIAG, which has remote homology to ring-forming proteins found in type III secretion systems, assembles into an oligomeric ring in the periplasmic-like space between the two membranes. Three-dimensional reconstruction of images generated by cryo-electron microscopy indicates that the SpoIIIAG ring has a cup-and-saucer architecture with a 6-nm central pore. Structural modeling of SpoIIIAG generated a 24-member ring with dimensions similar to those of the EM-derived saucer. Point mutations in the predicted oligomeric interface disrupted ring formation in vitro and impaired forespore gene expression and efficient spore formation in vivo. Taken together, our data provide strong support for the model in which the A–Q transenvelope complex contains a conduit that connects the mother cell and forespore. We propose that a set of stacked rings spans the intermembrane space, as has been found for type III secretion systems.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>27681621</pmid><doi>10.1073/pnas.1609604113</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1459-3201</orcidid><orcidid>https://orcid.org/0000-0002-9295-1035</orcidid><orcidid>https://orcid.org/0000-0002-6520-0041</orcidid><orcidid>https://orcid.org/0000-0002-9350-7606</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2016-10, Vol.113 (41), p.11585-11590 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5068255 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Bacillus subtilis - cytology Bacillus subtilis - physiology Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Biochemistry, Molecular Biology Biological Sciences Computer Simulation Cryoelectron Microscopy Gene expression Gram-negative bacteria Imaging, Three-Dimensional Life Sciences Magnetic Resonance Spectroscopy Membranes Models, Molecular Mutation - genetics Operon - genetics Protein Domains Proteins Sequence Homology, Amino Acid Spores, Bacterial - cytology Spores, Bacterial - physiology Structural Biology |
title | A ring-shaped conduit connects the mother cell and forespore during sporulation in Bacillus subtilis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A41%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20ring-shaped%20conduit%20connects%20the%20mother%20cell%20and%20forespore%20during%20sporulation%20in%20Bacillus%20subtilis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Rodrigues,%20Christopher%20D.%20A.&rft.date=2016-10-11&rft.volume=113&rft.issue=41&rft.spage=11585&rft.epage=11590&rft.pages=11585-11590&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1609604113&rft_dat=%3Cjstor_pubme%3E26472021%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1832955810&rft_id=info:pmid/27681621&rft_jstor_id=26472021&rfr_iscdi=true |