Complement pathway amplifies caspase-11-dependent cell death and endotoxin-induced sepsis severity

Cell death and release of proinflammatory mediators contribute to mortality during sepsis. Specifically, caspase-11-dependent cell death contributes to pathology and decreases in survival time in sepsis models. Priming of the host cell, through TLR4 and interferon receptors, induces caspase-11 expre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of experimental medicine 2016-10, Vol.213 (11), p.2365-2382
Hauptverfasser: Napier, Brooke A, Brubaker, Sky W, Sweeney, Timothy E, Monette, Patrick, Rothmeier, Greggory H, Gertsvolf, Nina A, Puschnik, Andreas, Carette, Jan E, Khatri, Purvesh, Monack, Denise M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cell death and release of proinflammatory mediators contribute to mortality during sepsis. Specifically, caspase-11-dependent cell death contributes to pathology and decreases in survival time in sepsis models. Priming of the host cell, through TLR4 and interferon receptors, induces caspase-11 expression, and cytosolic LPS directly stimulates caspase-11 activation, promoting the release of proinflammatory cytokines through pyroptosis and caspase-1 activation. Using a CRISPR-Cas9-mediated genome-wide screen, we identified novel mediators of caspase-11-dependent cell death. We found a complement-related peptidase, carboxypeptidase B1 (Cpb1), to be required for caspase-11 gene expression and subsequent caspase-11-dependent cell death. Cpb1 modifies a cleavage product of C3, which binds to and activates C3aR, and then modulates innate immune signaling. We find the Cpb1-C3-C3aR pathway induces caspase-11 expression through amplification of MAPK activity downstream of TLR4 and Ifnar activation, and mediates severity of LPS-induced sepsis (endotoxemia) and disease outcome in mice. We show C3aR is required for up-regulation of caspase-11 orthologues, caspase-4 and -5, in primary human macrophages during inflammation and that c3aR1 and caspase-5 transcripts are highly expressed in patients with severe sepsis; thus, suggesting that these pathways are important in human sepsis. Our results highlight a novel role for complement and the Cpb1-C3-C3aR pathway in proinflammatory signaling, caspase-11 cell death, and sepsis severity.
ISSN:0022-1007
1540-9538
1540-9538
DOI:10.1084/jem.20160027