Origin of the intrinsic rigidity of DNA
The intrinsic rigidities of DNA and RNA helices are generally thought to arise from some combination of vertical base-stacking interactions and intra-helix phosphate–phosphate charge repulsion; however, the relative contributions of these two types of interaction to helix rigidity have not been quan...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2004-01, Vol.32 (13), p.4055-4059 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The intrinsic rigidities of DNA and RNA helices are generally thought to arise from some combination of vertical base-stacking interactions and intra-helix phosphate–phosphate charge repulsion; however, the relative contributions of these two types of interaction to helix rigidity have not been quantified. To address this issue, we have measured the rotational decay times of a ‘gapped-duplex’ DNA molecule possessing a central, single-stranded region, dT24, before and after addition of the free purine base, N6-methyladenine (meA). Upon addition of meA, the bases pair with the T residues, forming a continuous stack within the gap region. Formation of the gapped duplex is accompanied by a nearly 2-fold increase in decay time, to values that are indistinguishable from the full duplex control for monovalent salt concentrations up to 90 mM. These results indicate that at least 90% of the rigidity of the dTn–dAn homopolymer derives from base pair stacking effects, with phosphate–phosphate interactions contributing relatively little to net helix rigidity at moderate salt concentrations. |
---|---|
ISSN: | 0305-1048 1362-4962 1362-4962 |
DOI: | 10.1093/nar/gkh740 |