Tilting and Tumbling in Transmembrane Anion Carriers: Activity Tuning through n-Alkyl Substitution

Anion transport by synthetic carriers (anionophores) holds promise for medical applications, especially the treatment of cystic fibrosis. Among the factors which determine carrier activity, the size and disposition of alkyl groups is proving remarkably important. Herein we describe a series of dithi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2016-02, Vol.22 (6), p.2004-2011
Hauptverfasser: Edwards, Sophie J., Marques, Igor, Dias, Christopher M., Tromans, Robert A., Lees, Nicholas R., Félix, Vítor, Valkenier, Hennie, Davis, Anthony P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2011
container_issue 6
container_start_page 2004
container_title Chemistry : a European journal
container_volume 22
creator Edwards, Sophie J.
Marques, Igor
Dias, Christopher M.
Tromans, Robert A.
Lees, Nicholas R.
Félix, Vítor
Valkenier, Hennie
Davis, Anthony P.
description Anion transport by synthetic carriers (anionophores) holds promise for medical applications, especially the treatment of cystic fibrosis. Among the factors which determine carrier activity, the size and disposition of alkyl groups is proving remarkably important. Herein we describe a series of dithioureidodecalin anionophores, in which alkyl substituents on one face are varied from C0 to C10 in two‐carbon steps. Activities increase then decrease as the chain length grows, peaking quite sharply at C6. Molecular dynamics simulations showed the transporter chloride complexes releasing chloride as they approach the membrane‐aqueous interface. The free transporter then stays at the interface, adopting an orientation that depends on the alkyl substituent. If chloride release is prevented, the complex is positioned similarly. Longer chains tilt the binding site away from the interface, potentially freeing the transporter or complex to move through the membrane. However, chains which are too long can also slow transport by inhibiting movement, and especially reorientation, within the phospholipid bilayer. Alkyl substituents are surprisingly important for determining anionophore activity. When chains become longer in these bis‐thioureas (see figure), transport rates first increase then decrease. Simulations revealed that the alkyl groups affect orientation and tumbling within the membrane. An optimum is reached when the complex is readily detached from the membrane interface, but still rotates quickly for anion delivery.
doi_str_mv 10.1002/chem.201504057
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5064602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3932107521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c7007-fa752a7aa4264a6d4bc8c64bbf6f3cf20218e6655f7aa8353f99d0da3f93c523</originalsourceid><addsrcrecordid>eNqNks9v0zAcxSMEYmVw5YgiceGS8o1_xhyQqrK1SAUkiICb5SRO6y1xNtsZ63-Po45qcABOT5Y_70l-fknyPId5DoBe1zvdzxHkFAhQ_iCZ5RTlGeaMPkxmIAjPGMXiJHni_QUACIbx4-QEMU6KgsMsqUrTBWO3qbJNWo591U0HY9PSKet73VdRdbqwZrDpUjlntPNv0kUdzI0J-2ixkyHs3DBud6nNFt3lvku_jJUPJowh2p4mj1rVef3sTk-T8vysXK6zzafV--Vik9UcgGet4hQprhRBjCjWkKouakaqqmUtrlsEKC80Y5S2kSkwxa0QDTQqKq4pwqfJ20Ps1Vj1uqm1DU518sqZXrm9HJSRv99Ys5Pb4UZSYITBFPDqLsAN16P2QfbG17rrYgHD6GVeIMYICAz_gQIQLhiaUl_-gV4Mo7OxCImAUCgoCPE3KudUUMQJFJGaH6jaDd473R5fl4Oc5iCnOcjjHKLhxf1Ojviv_4-AOAA_TKf3_4iTy_XZh_vh2cFrfNC3R69yl5JxzKn89nElv6--viv4eiM_45_pv9EK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1759527408</pqid></control><display><type>article</type><title>Tilting and Tumbling in Transmembrane Anion Carriers: Activity Tuning through n-Alkyl Substitution</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Edwards, Sophie J. ; Marques, Igor ; Dias, Christopher M. ; Tromans, Robert A. ; Lees, Nicholas R. ; Félix, Vítor ; Valkenier, Hennie ; Davis, Anthony P.</creator><creatorcontrib>Edwards, Sophie J. ; Marques, Igor ; Dias, Christopher M. ; Tromans, Robert A. ; Lees, Nicholas R. ; Félix, Vítor ; Valkenier, Hennie ; Davis, Anthony P.</creatorcontrib><description>Anion transport by synthetic carriers (anionophores) holds promise for medical applications, especially the treatment of cystic fibrosis. Among the factors which determine carrier activity, the size and disposition of alkyl groups is proving remarkably important. Herein we describe a series of dithioureidodecalin anionophores, in which alkyl substituents on one face are varied from C0 to C10 in two‐carbon steps. Activities increase then decrease as the chain length grows, peaking quite sharply at C6. Molecular dynamics simulations showed the transporter chloride complexes releasing chloride as they approach the membrane‐aqueous interface. The free transporter then stays at the interface, adopting an orientation that depends on the alkyl substituent. If chloride release is prevented, the complex is positioned similarly. Longer chains tilt the binding site away from the interface, potentially freeing the transporter or complex to move through the membrane. However, chains which are too long can also slow transport by inhibiting movement, and especially reorientation, within the phospholipid bilayer. Alkyl substituents are surprisingly important for determining anionophore activity. When chains become longer in these bis‐thioureas (see figure), transport rates first increase then decrease. Simulations revealed that the alkyl groups affect orientation and tumbling within the membrane. An optimum is reached when the complex is readily detached from the membrane interface, but still rotates quickly for anion delivery.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201504057</identifier><identifier>PMID: 26748870</identifier><identifier>CODEN: CEUJED</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>anion transport ; Anions ; Binding sites ; Carriers ; Chain mobility ; Chains ; Chemistry ; Chlorides ; Cystic fibrosis ; lipophilicity ; Membranes ; Molecular chains ; Molecular dynamics ; Phospholipids ; supramolecular chemistry ; Transport ; Transporter ; Tumbling</subject><ispartof>Chemistry : a European journal, 2016-02, Vol.22 (6), p.2004-2011</ispartof><rights>2016 The Authors. Published by Wiley-VCH Verlag GmbH &amp; Co. KGaA.</rights><rights>2016 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2016 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2016 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c7007-fa752a7aa4264a6d4bc8c64bbf6f3cf20218e6655f7aa8353f99d0da3f93c523</citedby><cites>FETCH-LOGICAL-c7007-fa752a7aa4264a6d4bc8c64bbf6f3cf20218e6655f7aa8353f99d0da3f93c523</cites><orcidid>0000-0001-5213-624X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201504057$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201504057$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26748870$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Edwards, Sophie J.</creatorcontrib><creatorcontrib>Marques, Igor</creatorcontrib><creatorcontrib>Dias, Christopher M.</creatorcontrib><creatorcontrib>Tromans, Robert A.</creatorcontrib><creatorcontrib>Lees, Nicholas R.</creatorcontrib><creatorcontrib>Félix, Vítor</creatorcontrib><creatorcontrib>Valkenier, Hennie</creatorcontrib><creatorcontrib>Davis, Anthony P.</creatorcontrib><title>Tilting and Tumbling in Transmembrane Anion Carriers: Activity Tuning through n-Alkyl Substitution</title><title>Chemistry : a European journal</title><addtitle>Chem. Eur. J</addtitle><description>Anion transport by synthetic carriers (anionophores) holds promise for medical applications, especially the treatment of cystic fibrosis. Among the factors which determine carrier activity, the size and disposition of alkyl groups is proving remarkably important. Herein we describe a series of dithioureidodecalin anionophores, in which alkyl substituents on one face are varied from C0 to C10 in two‐carbon steps. Activities increase then decrease as the chain length grows, peaking quite sharply at C6. Molecular dynamics simulations showed the transporter chloride complexes releasing chloride as they approach the membrane‐aqueous interface. The free transporter then stays at the interface, adopting an orientation that depends on the alkyl substituent. If chloride release is prevented, the complex is positioned similarly. Longer chains tilt the binding site away from the interface, potentially freeing the transporter or complex to move through the membrane. However, chains which are too long can also slow transport by inhibiting movement, and especially reorientation, within the phospholipid bilayer. Alkyl substituents are surprisingly important for determining anionophore activity. When chains become longer in these bis‐thioureas (see figure), transport rates first increase then decrease. Simulations revealed that the alkyl groups affect orientation and tumbling within the membrane. An optimum is reached when the complex is readily detached from the membrane interface, but still rotates quickly for anion delivery.</description><subject>anion transport</subject><subject>Anions</subject><subject>Binding sites</subject><subject>Carriers</subject><subject>Chain mobility</subject><subject>Chains</subject><subject>Chemistry</subject><subject>Chlorides</subject><subject>Cystic fibrosis</subject><subject>lipophilicity</subject><subject>Membranes</subject><subject>Molecular chains</subject><subject>Molecular dynamics</subject><subject>Phospholipids</subject><subject>supramolecular chemistry</subject><subject>Transport</subject><subject>Transporter</subject><subject>Tumbling</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqNks9v0zAcxSMEYmVw5YgiceGS8o1_xhyQqrK1SAUkiICb5SRO6y1xNtsZ63-Po45qcABOT5Y_70l-fknyPId5DoBe1zvdzxHkFAhQ_iCZ5RTlGeaMPkxmIAjPGMXiJHni_QUACIbx4-QEMU6KgsMsqUrTBWO3qbJNWo591U0HY9PSKet73VdRdbqwZrDpUjlntPNv0kUdzI0J-2ixkyHs3DBud6nNFt3lvku_jJUPJowh2p4mj1rVef3sTk-T8vysXK6zzafV--Vik9UcgGet4hQprhRBjCjWkKouakaqqmUtrlsEKC80Y5S2kSkwxa0QDTQqKq4pwqfJ20Ps1Vj1uqm1DU518sqZXrm9HJSRv99Ys5Pb4UZSYITBFPDqLsAN16P2QfbG17rrYgHD6GVeIMYICAz_gQIQLhiaUl_-gV4Mo7OxCImAUCgoCPE3KudUUMQJFJGaH6jaDd473R5fl4Oc5iCnOcjjHKLhxf1Ojviv_4-AOAA_TKf3_4iTy_XZh_vh2cFrfNC3R69yl5JxzKn89nElv6--viv4eiM_45_pv9EK</recordid><startdate>20160205</startdate><enddate>20160205</enddate><creator>Edwards, Sophie J.</creator><creator>Marques, Igor</creator><creator>Dias, Christopher M.</creator><creator>Tromans, Robert A.</creator><creator>Lees, Nicholas R.</creator><creator>Félix, Vítor</creator><creator>Valkenier, Hennie</creator><creator>Davis, Anthony P.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5213-624X</orcidid></search><sort><creationdate>20160205</creationdate><title>Tilting and Tumbling in Transmembrane Anion Carriers: Activity Tuning through n-Alkyl Substitution</title><author>Edwards, Sophie J. ; Marques, Igor ; Dias, Christopher M. ; Tromans, Robert A. ; Lees, Nicholas R. ; Félix, Vítor ; Valkenier, Hennie ; Davis, Anthony P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c7007-fa752a7aa4264a6d4bc8c64bbf6f3cf20218e6655f7aa8353f99d0da3f93c523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>anion transport</topic><topic>Anions</topic><topic>Binding sites</topic><topic>Carriers</topic><topic>Chain mobility</topic><topic>Chains</topic><topic>Chemistry</topic><topic>Chlorides</topic><topic>Cystic fibrosis</topic><topic>lipophilicity</topic><topic>Membranes</topic><topic>Molecular chains</topic><topic>Molecular dynamics</topic><topic>Phospholipids</topic><topic>supramolecular chemistry</topic><topic>Transport</topic><topic>Transporter</topic><topic>Tumbling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Edwards, Sophie J.</creatorcontrib><creatorcontrib>Marques, Igor</creatorcontrib><creatorcontrib>Dias, Christopher M.</creatorcontrib><creatorcontrib>Tromans, Robert A.</creatorcontrib><creatorcontrib>Lees, Nicholas R.</creatorcontrib><creatorcontrib>Félix, Vítor</creatorcontrib><creatorcontrib>Valkenier, Hennie</creatorcontrib><creatorcontrib>Davis, Anthony P.</creatorcontrib><collection>Istex</collection><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Edwards, Sophie J.</au><au>Marques, Igor</au><au>Dias, Christopher M.</au><au>Tromans, Robert A.</au><au>Lees, Nicholas R.</au><au>Félix, Vítor</au><au>Valkenier, Hennie</au><au>Davis, Anthony P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tilting and Tumbling in Transmembrane Anion Carriers: Activity Tuning through n-Alkyl Substitution</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chem. Eur. J</addtitle><date>2016-02-05</date><risdate>2016</risdate><volume>22</volume><issue>6</issue><spage>2004</spage><epage>2011</epage><pages>2004-2011</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><coden>CEUJED</coden><abstract>Anion transport by synthetic carriers (anionophores) holds promise for medical applications, especially the treatment of cystic fibrosis. Among the factors which determine carrier activity, the size and disposition of alkyl groups is proving remarkably important. Herein we describe a series of dithioureidodecalin anionophores, in which alkyl substituents on one face are varied from C0 to C10 in two‐carbon steps. Activities increase then decrease as the chain length grows, peaking quite sharply at C6. Molecular dynamics simulations showed the transporter chloride complexes releasing chloride as they approach the membrane‐aqueous interface. The free transporter then stays at the interface, adopting an orientation that depends on the alkyl substituent. If chloride release is prevented, the complex is positioned similarly. Longer chains tilt the binding site away from the interface, potentially freeing the transporter or complex to move through the membrane. However, chains which are too long can also slow transport by inhibiting movement, and especially reorientation, within the phospholipid bilayer. Alkyl substituents are surprisingly important for determining anionophore activity. When chains become longer in these bis‐thioureas (see figure), transport rates first increase then decrease. Simulations revealed that the alkyl groups affect orientation and tumbling within the membrane. An optimum is reached when the complex is readily detached from the membrane interface, but still rotates quickly for anion delivery.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>26748870</pmid><doi>10.1002/chem.201504057</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5213-624X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2016-02, Vol.22 (6), p.2004-2011
issn 0947-6539
1521-3765
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5064602
source Wiley Online Library Journals Frontfile Complete
subjects anion transport
Anions
Binding sites
Carriers
Chain mobility
Chains
Chemistry
Chlorides
Cystic fibrosis
lipophilicity
Membranes
Molecular chains
Molecular dynamics
Phospholipids
supramolecular chemistry
Transport
Transporter
Tumbling
title Tilting and Tumbling in Transmembrane Anion Carriers: Activity Tuning through n-Alkyl Substitution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A06%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tilting%20and%20Tumbling%20in%20Transmembrane%20Anion%20Carriers:%20Activity%20Tuning%20through%20n-Alkyl%20Substitution&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Edwards,%20Sophie%20J.&rft.date=2016-02-05&rft.volume=22&rft.issue=6&rft.spage=2004&rft.epage=2011&rft.pages=2004-2011&rft.issn=0947-6539&rft.eissn=1521-3765&rft.coden=CEUJED&rft_id=info:doi/10.1002/chem.201504057&rft_dat=%3Cproquest_pubme%3E3932107521%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1759527408&rft_id=info:pmid/26748870&rfr_iscdi=true