Glucose-independent Acetate Metabolism Promotes Melanoma Cell Survival and Tumor Growth

Tumors rely on multiple nutrients to meet cellular bioenergetics and macromolecular synthesis demands of rapidly dividing cells. Although the role of glucose and glutamine in cancer metabolism is well understood, the relative contribution of acetate metabolism remains to be clarified. We show that g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2016-10, Vol.291 (42), p.21869-21879
Hauptverfasser: Lakhter, Alexander J, Hamilton, James, Konger, Raymond L, Brustovetsky, Nickolay, Broxmeyer, Hal E, Naidu, Samisubbu R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21879
container_issue 42
container_start_page 21869
container_title The Journal of biological chemistry
container_volume 291
creator Lakhter, Alexander J
Hamilton, James
Konger, Raymond L
Brustovetsky, Nickolay
Broxmeyer, Hal E
Naidu, Samisubbu R
description Tumors rely on multiple nutrients to meet cellular bioenergetics and macromolecular synthesis demands of rapidly dividing cells. Although the role of glucose and glutamine in cancer metabolism is well understood, the relative contribution of acetate metabolism remains to be clarified. We show that glutamine supplementation is not sufficient to prevent loss of cell viability in a subset of glucose-deprived melanoma cells, but synergizes with acetate to support cell survival. Glucose-deprived melanoma cells depend on both oxidative phosphorylation and acetate metabolism for cell survival. Acetate supplementation significantly contributed to maintenance of ATP levels in glucose-starved cells. Unlike acetate, short chain fatty acids such as butyrate and propionate failed to prevent loss of cell viability from glucose deprivation. In vivo studies revealed that in addition to nucleo-cytoplasmic acetate assimilating enzyme ACSS2, mitochondrial ACSS1 was critical for melanoma tumor growth in mice. Our data indicate that acetate metabolism may be a potential therapeutic target for BRAF mutant melanoma.
doi_str_mv 10.1074/jbc.M115.712166
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5063972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27539851</sourcerecordid><originalsourceid>FETCH-LOGICAL-p233t-cb800b6e9dbbd7bd81ad9e43044005b516324d106cd080ca025db38544cc45763</originalsourceid><addsrcrecordid>eNpVkFtLw0AQhRdRbK0--yb7B1Jnb8nmRShFq9CiYEXfwt60KZts2FzEf2_ACzoP58A5zMcwCJ0TmBPI-OVem_mGEDHPCCVpeoCmBCRLmCAvh2gKQEmSUyEn6KRt9zAOz8kxmtBMsFwKMkXPK9-b0LqkrK1r3Ch1hxfGdapzeDOaDr5sK_wQQxU6146ZV3WoFF467_FjH4dyUB6r2uJtX4WIVzG8d7tTdPSqfOvOvn2Gnm6ut8vbZH2_ulsu1klDGesSoyWATl1utbaZtpIomzvOgHMAoQVJGeWWQGosSDAKqLCaScG5MVxkKZuhqy9u0-vKWTOeH5UvmlhWKn4UQZXF_6Yud8VbGAoBKcszOgIu_gJ-N39exD4B9hprDw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Glucose-independent Acetate Metabolism Promotes Melanoma Cell Survival and Tumor Growth</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Lakhter, Alexander J ; Hamilton, James ; Konger, Raymond L ; Brustovetsky, Nickolay ; Broxmeyer, Hal E ; Naidu, Samisubbu R</creator><creatorcontrib>Lakhter, Alexander J ; Hamilton, James ; Konger, Raymond L ; Brustovetsky, Nickolay ; Broxmeyer, Hal E ; Naidu, Samisubbu R</creatorcontrib><description>Tumors rely on multiple nutrients to meet cellular bioenergetics and macromolecular synthesis demands of rapidly dividing cells. Although the role of glucose and glutamine in cancer metabolism is well understood, the relative contribution of acetate metabolism remains to be clarified. We show that glutamine supplementation is not sufficient to prevent loss of cell viability in a subset of glucose-deprived melanoma cells, but synergizes with acetate to support cell survival. Glucose-deprived melanoma cells depend on both oxidative phosphorylation and acetate metabolism for cell survival. Acetate supplementation significantly contributed to maintenance of ATP levels in glucose-starved cells. Unlike acetate, short chain fatty acids such as butyrate and propionate failed to prevent loss of cell viability from glucose deprivation. In vivo studies revealed that in addition to nucleo-cytoplasmic acetate assimilating enzyme ACSS2, mitochondrial ACSS1 was critical for melanoma tumor growth in mice. Our data indicate that acetate metabolism may be a potential therapeutic target for BRAF mutant melanoma.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M115.712166</identifier><identifier>PMID: 27539851</identifier><language>eng</language><publisher>United States: American Society for Biochemistry and Molecular Biology</publisher><subject>Acetates - metabolism ; Acetyl-CoA Carboxylase - genetics ; Acetyl-CoA Carboxylase - metabolism ; Adenosine Triphosphate - metabolism ; Animals ; Butyric Acid - metabolism ; Cell Line, Tumor ; Female ; Glucose - genetics ; Glucose - metabolism ; Heterografts ; Humans ; Melanoma - genetics ; Melanoma - metabolism ; Melanoma - pathology ; Melanoma - therapy ; Metabolism ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Mutation ; Neoplasm Transplantation ; Oxidative Phosphorylation ; Propionates - metabolism ; Proto-Oncogene Proteins B-raf - genetics ; Proto-Oncogene Proteins B-raf - metabolism</subject><ispartof>The Journal of biological chemistry, 2016-10, Vol.291 (42), p.21869-21879</ispartof><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc. 2016 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9411-660X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5063972/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5063972/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27539851$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lakhter, Alexander J</creatorcontrib><creatorcontrib>Hamilton, James</creatorcontrib><creatorcontrib>Konger, Raymond L</creatorcontrib><creatorcontrib>Brustovetsky, Nickolay</creatorcontrib><creatorcontrib>Broxmeyer, Hal E</creatorcontrib><creatorcontrib>Naidu, Samisubbu R</creatorcontrib><title>Glucose-independent Acetate Metabolism Promotes Melanoma Cell Survival and Tumor Growth</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Tumors rely on multiple nutrients to meet cellular bioenergetics and macromolecular synthesis demands of rapidly dividing cells. Although the role of glucose and glutamine in cancer metabolism is well understood, the relative contribution of acetate metabolism remains to be clarified. We show that glutamine supplementation is not sufficient to prevent loss of cell viability in a subset of glucose-deprived melanoma cells, but synergizes with acetate to support cell survival. Glucose-deprived melanoma cells depend on both oxidative phosphorylation and acetate metabolism for cell survival. Acetate supplementation significantly contributed to maintenance of ATP levels in glucose-starved cells. Unlike acetate, short chain fatty acids such as butyrate and propionate failed to prevent loss of cell viability from glucose deprivation. In vivo studies revealed that in addition to nucleo-cytoplasmic acetate assimilating enzyme ACSS2, mitochondrial ACSS1 was critical for melanoma tumor growth in mice. Our data indicate that acetate metabolism may be a potential therapeutic target for BRAF mutant melanoma.</description><subject>Acetates - metabolism</subject><subject>Acetyl-CoA Carboxylase - genetics</subject><subject>Acetyl-CoA Carboxylase - metabolism</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Butyric Acid - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Female</subject><subject>Glucose - genetics</subject><subject>Glucose - metabolism</subject><subject>Heterografts</subject><subject>Humans</subject><subject>Melanoma - genetics</subject><subject>Melanoma - metabolism</subject><subject>Melanoma - pathology</subject><subject>Melanoma - therapy</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Inbred NOD</subject><subject>Mice, SCID</subject><subject>Mutation</subject><subject>Neoplasm Transplantation</subject><subject>Oxidative Phosphorylation</subject><subject>Propionates - metabolism</subject><subject>Proto-Oncogene Proteins B-raf - genetics</subject><subject>Proto-Oncogene Proteins B-raf - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkFtLw0AQhRdRbK0--yb7B1Jnb8nmRShFq9CiYEXfwt60KZts2FzEf2_ACzoP58A5zMcwCJ0TmBPI-OVem_mGEDHPCCVpeoCmBCRLmCAvh2gKQEmSUyEn6KRt9zAOz8kxmtBMsFwKMkXPK9-b0LqkrK1r3Ch1hxfGdapzeDOaDr5sK_wQQxU6146ZV3WoFF467_FjH4dyUB6r2uJtX4WIVzG8d7tTdPSqfOvOvn2Gnm6ut8vbZH2_ulsu1klDGesSoyWATl1utbaZtpIomzvOgHMAoQVJGeWWQGosSDAKqLCaScG5MVxkKZuhqy9u0-vKWTOeH5UvmlhWKn4UQZXF_6Yud8VbGAoBKcszOgIu_gJ-N39exD4B9hprDw</recordid><startdate>20161014</startdate><enddate>20161014</enddate><creator>Lakhter, Alexander J</creator><creator>Hamilton, James</creator><creator>Konger, Raymond L</creator><creator>Brustovetsky, Nickolay</creator><creator>Broxmeyer, Hal E</creator><creator>Naidu, Samisubbu R</creator><general>American Society for Biochemistry and Molecular Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9411-660X</orcidid></search><sort><creationdate>20161014</creationdate><title>Glucose-independent Acetate Metabolism Promotes Melanoma Cell Survival and Tumor Growth</title><author>Lakhter, Alexander J ; Hamilton, James ; Konger, Raymond L ; Brustovetsky, Nickolay ; Broxmeyer, Hal E ; Naidu, Samisubbu R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p233t-cb800b6e9dbbd7bd81ad9e43044005b516324d106cd080ca025db38544cc45763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acetates - metabolism</topic><topic>Acetyl-CoA Carboxylase - genetics</topic><topic>Acetyl-CoA Carboxylase - metabolism</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Butyric Acid - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Female</topic><topic>Glucose - genetics</topic><topic>Glucose - metabolism</topic><topic>Heterografts</topic><topic>Humans</topic><topic>Melanoma - genetics</topic><topic>Melanoma - metabolism</topic><topic>Melanoma - pathology</topic><topic>Melanoma - therapy</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Inbred NOD</topic><topic>Mice, SCID</topic><topic>Mutation</topic><topic>Neoplasm Transplantation</topic><topic>Oxidative Phosphorylation</topic><topic>Propionates - metabolism</topic><topic>Proto-Oncogene Proteins B-raf - genetics</topic><topic>Proto-Oncogene Proteins B-raf - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lakhter, Alexander J</creatorcontrib><creatorcontrib>Hamilton, James</creatorcontrib><creatorcontrib>Konger, Raymond L</creatorcontrib><creatorcontrib>Brustovetsky, Nickolay</creatorcontrib><creatorcontrib>Broxmeyer, Hal E</creatorcontrib><creatorcontrib>Naidu, Samisubbu R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lakhter, Alexander J</au><au>Hamilton, James</au><au>Konger, Raymond L</au><au>Brustovetsky, Nickolay</au><au>Broxmeyer, Hal E</au><au>Naidu, Samisubbu R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glucose-independent Acetate Metabolism Promotes Melanoma Cell Survival and Tumor Growth</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2016-10-14</date><risdate>2016</risdate><volume>291</volume><issue>42</issue><spage>21869</spage><epage>21879</epage><pages>21869-21879</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Tumors rely on multiple nutrients to meet cellular bioenergetics and macromolecular synthesis demands of rapidly dividing cells. Although the role of glucose and glutamine in cancer metabolism is well understood, the relative contribution of acetate metabolism remains to be clarified. We show that glutamine supplementation is not sufficient to prevent loss of cell viability in a subset of glucose-deprived melanoma cells, but synergizes with acetate to support cell survival. Glucose-deprived melanoma cells depend on both oxidative phosphorylation and acetate metabolism for cell survival. Acetate supplementation significantly contributed to maintenance of ATP levels in glucose-starved cells. Unlike acetate, short chain fatty acids such as butyrate and propionate failed to prevent loss of cell viability from glucose deprivation. In vivo studies revealed that in addition to nucleo-cytoplasmic acetate assimilating enzyme ACSS2, mitochondrial ACSS1 was critical for melanoma tumor growth in mice. Our data indicate that acetate metabolism may be a potential therapeutic target for BRAF mutant melanoma.</abstract><cop>United States</cop><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>27539851</pmid><doi>10.1074/jbc.M115.712166</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9411-660X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2016-10, Vol.291 (42), p.21869-21879
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5063972
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Acetates - metabolism
Acetyl-CoA Carboxylase - genetics
Acetyl-CoA Carboxylase - metabolism
Adenosine Triphosphate - metabolism
Animals
Butyric Acid - metabolism
Cell Line, Tumor
Female
Glucose - genetics
Glucose - metabolism
Heterografts
Humans
Melanoma - genetics
Melanoma - metabolism
Melanoma - pathology
Melanoma - therapy
Metabolism
Mice
Mice, Inbred NOD
Mice, SCID
Mutation
Neoplasm Transplantation
Oxidative Phosphorylation
Propionates - metabolism
Proto-Oncogene Proteins B-raf - genetics
Proto-Oncogene Proteins B-raf - metabolism
title Glucose-independent Acetate Metabolism Promotes Melanoma Cell Survival and Tumor Growth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A29%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glucose-independent%20Acetate%20Metabolism%20Promotes%20Melanoma%20Cell%20Survival%20and%20Tumor%20Growth&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Lakhter,%20Alexander%20J&rft.date=2016-10-14&rft.volume=291&rft.issue=42&rft.spage=21869&rft.epage=21879&rft.pages=21869-21879&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M115.712166&rft_dat=%3Cpubmed%3E27539851%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/27539851&rfr_iscdi=true