Glucose-independent Acetate Metabolism Promotes Melanoma Cell Survival and Tumor Growth
Tumors rely on multiple nutrients to meet cellular bioenergetics and macromolecular synthesis demands of rapidly dividing cells. Although the role of glucose and glutamine in cancer metabolism is well understood, the relative contribution of acetate metabolism remains to be clarified. We show that g...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2016-10, Vol.291 (42), p.21869-21879 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21879 |
---|---|
container_issue | 42 |
container_start_page | 21869 |
container_title | The Journal of biological chemistry |
container_volume | 291 |
creator | Lakhter, Alexander J Hamilton, James Konger, Raymond L Brustovetsky, Nickolay Broxmeyer, Hal E Naidu, Samisubbu R |
description | Tumors rely on multiple nutrients to meet cellular bioenergetics and macromolecular synthesis demands of rapidly dividing cells. Although the role of glucose and glutamine in cancer metabolism is well understood, the relative contribution of acetate metabolism remains to be clarified. We show that glutamine supplementation is not sufficient to prevent loss of cell viability in a subset of glucose-deprived melanoma cells, but synergizes with acetate to support cell survival. Glucose-deprived melanoma cells depend on both oxidative phosphorylation and acetate metabolism for cell survival. Acetate supplementation significantly contributed to maintenance of ATP levels in glucose-starved cells. Unlike acetate, short chain fatty acids such as butyrate and propionate failed to prevent loss of cell viability from glucose deprivation. In vivo studies revealed that in addition to nucleo-cytoplasmic acetate assimilating enzyme ACSS2, mitochondrial ACSS1 was critical for melanoma tumor growth in mice. Our data indicate that acetate metabolism may be a potential therapeutic target for BRAF mutant melanoma. |
doi_str_mv | 10.1074/jbc.M115.712166 |
format | Article |
fullrecord | <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5063972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27539851</sourcerecordid><originalsourceid>FETCH-LOGICAL-p233t-cb800b6e9dbbd7bd81ad9e43044005b516324d106cd080ca025db38544cc45763</originalsourceid><addsrcrecordid>eNpVkFtLw0AQhRdRbK0--yb7B1Jnb8nmRShFq9CiYEXfwt60KZts2FzEf2_ACzoP58A5zMcwCJ0TmBPI-OVem_mGEDHPCCVpeoCmBCRLmCAvh2gKQEmSUyEn6KRt9zAOz8kxmtBMsFwKMkXPK9-b0LqkrK1r3Ch1hxfGdapzeDOaDr5sK_wQQxU6146ZV3WoFF467_FjH4dyUB6r2uJtX4WIVzG8d7tTdPSqfOvOvn2Gnm6ut8vbZH2_ulsu1klDGesSoyWATl1utbaZtpIomzvOgHMAoQVJGeWWQGosSDAKqLCaScG5MVxkKZuhqy9u0-vKWTOeH5UvmlhWKn4UQZXF_6Yud8VbGAoBKcszOgIu_gJ-N39exD4B9hprDw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Glucose-independent Acetate Metabolism Promotes Melanoma Cell Survival and Tumor Growth</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Lakhter, Alexander J ; Hamilton, James ; Konger, Raymond L ; Brustovetsky, Nickolay ; Broxmeyer, Hal E ; Naidu, Samisubbu R</creator><creatorcontrib>Lakhter, Alexander J ; Hamilton, James ; Konger, Raymond L ; Brustovetsky, Nickolay ; Broxmeyer, Hal E ; Naidu, Samisubbu R</creatorcontrib><description>Tumors rely on multiple nutrients to meet cellular bioenergetics and macromolecular synthesis demands of rapidly dividing cells. Although the role of glucose and glutamine in cancer metabolism is well understood, the relative contribution of acetate metabolism remains to be clarified. We show that glutamine supplementation is not sufficient to prevent loss of cell viability in a subset of glucose-deprived melanoma cells, but synergizes with acetate to support cell survival. Glucose-deprived melanoma cells depend on both oxidative phosphorylation and acetate metabolism for cell survival. Acetate supplementation significantly contributed to maintenance of ATP levels in glucose-starved cells. Unlike acetate, short chain fatty acids such as butyrate and propionate failed to prevent loss of cell viability from glucose deprivation. In vivo studies revealed that in addition to nucleo-cytoplasmic acetate assimilating enzyme ACSS2, mitochondrial ACSS1 was critical for melanoma tumor growth in mice. Our data indicate that acetate metabolism may be a potential therapeutic target for BRAF mutant melanoma.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M115.712166</identifier><identifier>PMID: 27539851</identifier><language>eng</language><publisher>United States: American Society for Biochemistry and Molecular Biology</publisher><subject>Acetates - metabolism ; Acetyl-CoA Carboxylase - genetics ; Acetyl-CoA Carboxylase - metabolism ; Adenosine Triphosphate - metabolism ; Animals ; Butyric Acid - metabolism ; Cell Line, Tumor ; Female ; Glucose - genetics ; Glucose - metabolism ; Heterografts ; Humans ; Melanoma - genetics ; Melanoma - metabolism ; Melanoma - pathology ; Melanoma - therapy ; Metabolism ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Mutation ; Neoplasm Transplantation ; Oxidative Phosphorylation ; Propionates - metabolism ; Proto-Oncogene Proteins B-raf - genetics ; Proto-Oncogene Proteins B-raf - metabolism</subject><ispartof>The Journal of biological chemistry, 2016-10, Vol.291 (42), p.21869-21879</ispartof><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc. 2016 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9411-660X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5063972/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5063972/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27539851$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lakhter, Alexander J</creatorcontrib><creatorcontrib>Hamilton, James</creatorcontrib><creatorcontrib>Konger, Raymond L</creatorcontrib><creatorcontrib>Brustovetsky, Nickolay</creatorcontrib><creatorcontrib>Broxmeyer, Hal E</creatorcontrib><creatorcontrib>Naidu, Samisubbu R</creatorcontrib><title>Glucose-independent Acetate Metabolism Promotes Melanoma Cell Survival and Tumor Growth</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Tumors rely on multiple nutrients to meet cellular bioenergetics and macromolecular synthesis demands of rapidly dividing cells. Although the role of glucose and glutamine in cancer metabolism is well understood, the relative contribution of acetate metabolism remains to be clarified. We show that glutamine supplementation is not sufficient to prevent loss of cell viability in a subset of glucose-deprived melanoma cells, but synergizes with acetate to support cell survival. Glucose-deprived melanoma cells depend on both oxidative phosphorylation and acetate metabolism for cell survival. Acetate supplementation significantly contributed to maintenance of ATP levels in glucose-starved cells. Unlike acetate, short chain fatty acids such as butyrate and propionate failed to prevent loss of cell viability from glucose deprivation. In vivo studies revealed that in addition to nucleo-cytoplasmic acetate assimilating enzyme ACSS2, mitochondrial ACSS1 was critical for melanoma tumor growth in mice. Our data indicate that acetate metabolism may be a potential therapeutic target for BRAF mutant melanoma.</description><subject>Acetates - metabolism</subject><subject>Acetyl-CoA Carboxylase - genetics</subject><subject>Acetyl-CoA Carboxylase - metabolism</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Butyric Acid - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Female</subject><subject>Glucose - genetics</subject><subject>Glucose - metabolism</subject><subject>Heterografts</subject><subject>Humans</subject><subject>Melanoma - genetics</subject><subject>Melanoma - metabolism</subject><subject>Melanoma - pathology</subject><subject>Melanoma - therapy</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Inbred NOD</subject><subject>Mice, SCID</subject><subject>Mutation</subject><subject>Neoplasm Transplantation</subject><subject>Oxidative Phosphorylation</subject><subject>Propionates - metabolism</subject><subject>Proto-Oncogene Proteins B-raf - genetics</subject><subject>Proto-Oncogene Proteins B-raf - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkFtLw0AQhRdRbK0--yb7B1Jnb8nmRShFq9CiYEXfwt60KZts2FzEf2_ACzoP58A5zMcwCJ0TmBPI-OVem_mGEDHPCCVpeoCmBCRLmCAvh2gKQEmSUyEn6KRt9zAOz8kxmtBMsFwKMkXPK9-b0LqkrK1r3Ch1hxfGdapzeDOaDr5sK_wQQxU6146ZV3WoFF467_FjH4dyUB6r2uJtX4WIVzG8d7tTdPSqfOvOvn2Gnm6ut8vbZH2_ulsu1klDGesSoyWATl1utbaZtpIomzvOgHMAoQVJGeWWQGosSDAKqLCaScG5MVxkKZuhqy9u0-vKWTOeH5UvmlhWKn4UQZXF_6Yud8VbGAoBKcszOgIu_gJ-N39exD4B9hprDw</recordid><startdate>20161014</startdate><enddate>20161014</enddate><creator>Lakhter, Alexander J</creator><creator>Hamilton, James</creator><creator>Konger, Raymond L</creator><creator>Brustovetsky, Nickolay</creator><creator>Broxmeyer, Hal E</creator><creator>Naidu, Samisubbu R</creator><general>American Society for Biochemistry and Molecular Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9411-660X</orcidid></search><sort><creationdate>20161014</creationdate><title>Glucose-independent Acetate Metabolism Promotes Melanoma Cell Survival and Tumor Growth</title><author>Lakhter, Alexander J ; Hamilton, James ; Konger, Raymond L ; Brustovetsky, Nickolay ; Broxmeyer, Hal E ; Naidu, Samisubbu R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p233t-cb800b6e9dbbd7bd81ad9e43044005b516324d106cd080ca025db38544cc45763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acetates - metabolism</topic><topic>Acetyl-CoA Carboxylase - genetics</topic><topic>Acetyl-CoA Carboxylase - metabolism</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Butyric Acid - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Female</topic><topic>Glucose - genetics</topic><topic>Glucose - metabolism</topic><topic>Heterografts</topic><topic>Humans</topic><topic>Melanoma - genetics</topic><topic>Melanoma - metabolism</topic><topic>Melanoma - pathology</topic><topic>Melanoma - therapy</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Inbred NOD</topic><topic>Mice, SCID</topic><topic>Mutation</topic><topic>Neoplasm Transplantation</topic><topic>Oxidative Phosphorylation</topic><topic>Propionates - metabolism</topic><topic>Proto-Oncogene Proteins B-raf - genetics</topic><topic>Proto-Oncogene Proteins B-raf - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lakhter, Alexander J</creatorcontrib><creatorcontrib>Hamilton, James</creatorcontrib><creatorcontrib>Konger, Raymond L</creatorcontrib><creatorcontrib>Brustovetsky, Nickolay</creatorcontrib><creatorcontrib>Broxmeyer, Hal E</creatorcontrib><creatorcontrib>Naidu, Samisubbu R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lakhter, Alexander J</au><au>Hamilton, James</au><au>Konger, Raymond L</au><au>Brustovetsky, Nickolay</au><au>Broxmeyer, Hal E</au><au>Naidu, Samisubbu R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glucose-independent Acetate Metabolism Promotes Melanoma Cell Survival and Tumor Growth</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2016-10-14</date><risdate>2016</risdate><volume>291</volume><issue>42</issue><spage>21869</spage><epage>21879</epage><pages>21869-21879</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Tumors rely on multiple nutrients to meet cellular bioenergetics and macromolecular synthesis demands of rapidly dividing cells. Although the role of glucose and glutamine in cancer metabolism is well understood, the relative contribution of acetate metabolism remains to be clarified. We show that glutamine supplementation is not sufficient to prevent loss of cell viability in a subset of glucose-deprived melanoma cells, but synergizes with acetate to support cell survival. Glucose-deprived melanoma cells depend on both oxidative phosphorylation and acetate metabolism for cell survival. Acetate supplementation significantly contributed to maintenance of ATP levels in glucose-starved cells. Unlike acetate, short chain fatty acids such as butyrate and propionate failed to prevent loss of cell viability from glucose deprivation. In vivo studies revealed that in addition to nucleo-cytoplasmic acetate assimilating enzyme ACSS2, mitochondrial ACSS1 was critical for melanoma tumor growth in mice. Our data indicate that acetate metabolism may be a potential therapeutic target for BRAF mutant melanoma.</abstract><cop>United States</cop><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>27539851</pmid><doi>10.1074/jbc.M115.712166</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9411-660X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2016-10, Vol.291 (42), p.21869-21879 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5063972 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Acetates - metabolism Acetyl-CoA Carboxylase - genetics Acetyl-CoA Carboxylase - metabolism Adenosine Triphosphate - metabolism Animals Butyric Acid - metabolism Cell Line, Tumor Female Glucose - genetics Glucose - metabolism Heterografts Humans Melanoma - genetics Melanoma - metabolism Melanoma - pathology Melanoma - therapy Metabolism Mice Mice, Inbred NOD Mice, SCID Mutation Neoplasm Transplantation Oxidative Phosphorylation Propionates - metabolism Proto-Oncogene Proteins B-raf - genetics Proto-Oncogene Proteins B-raf - metabolism |
title | Glucose-independent Acetate Metabolism Promotes Melanoma Cell Survival and Tumor Growth |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A29%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glucose-independent%20Acetate%20Metabolism%20Promotes%20Melanoma%20Cell%20Survival%20and%20Tumor%20Growth&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Lakhter,%20Alexander%20J&rft.date=2016-10-14&rft.volume=291&rft.issue=42&rft.spage=21869&rft.epage=21879&rft.pages=21869-21879&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M115.712166&rft_dat=%3Cpubmed%3E27539851%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/27539851&rfr_iscdi=true |