Riboflavin photoactivation by upconversion nanoparticles for cancer treatment
Riboflavin (Rf) is a vitamin and endogenous photosensitizer capable to generate reactive oxygen species (ROS) under UV-blue irradiation and kill cancer cells, which are characterized by the enhanced uptake of Rf. We confirmed its phototoxicity on human breast adenocarcinoma cells SK-BR-3 preincubate...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2016-10, Vol.6 (1), p.35103-35103, Article 35103 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35103 |
---|---|
container_issue | 1 |
container_start_page | 35103 |
container_title | Scientific reports |
container_volume | 6 |
creator | Khaydukov, E. V. Mironova, K. E. Semchishen, V. A. Generalova, A. N. Nechaev, A. V. Khochenkov, D. A. Stepanova, E. V. Lebedev, O. I. Zvyagin, A. V. Deyev, S. M. Panchenko, V. Ya |
description | Riboflavin (Rf) is a vitamin and endogenous photosensitizer capable to generate reactive oxygen species (ROS) under UV-blue irradiation and kill cancer cells, which are characterized by the enhanced uptake of Rf. We confirmed its phototoxicity on human breast adenocarcinoma cells SK-BR-3 preincubated with 30-μM Rf and irradiated with ultraviolet light, and proved that such Rf concentrations (60 μM) are attainable
in vivo
in tumour site by systemic intravascular injection. In order to extend the Rf photosensitization depth in cancer tissue to 6 mm in depth, we purpose-designed core/shell upconversion nanoparticles (UCNPs, NaYF
4
:Yb
3+
:Tm
3+
/NaYF
4
) capable to convert 2% of the deeply-penetrating excitation at 975 nm to ultraviolet-blue power. This power was expended to photosensitise Rf and kill SK-BR-3 cells preincubated with UCNPs and Rf, where the UCNP-Rf energy transfer was photon-mediated with ~14% Förster process contribution. SK-BR-3 xenograft regression in mice was observed for 50 days, following the Rf-UCNPs peritumoural injection and near-infrared light photodynamic treatment of the lesions. |
doi_str_mv | 10.1038/srep35103 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5059683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835405820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-9efaaf645ab6ee2a25e4b4398a6558e2a73100b561ce90483ac35f6992ceb7593</originalsourceid><addsrcrecordid>eNplkU1r3DAQhkVpaUKSQ_9AMfTSFDbVp21dAiEkTWFLobRnMVbHWQWv5EiyIf8-Wna7bBNdNJp59L4jDSEfGL1gVLRfU8RRqBK-IcecSrXggvO3B_EROUvpgZaluJZMvydHvGkEE4oekx-_XBf6AWbnq3EVcgCb3QzZBV91T9U02uBnjGlz9uDDCDE7O2Cq-hArC95irHJEyGv0-ZS862FIeLbbT8if25vf13eL5c9v36-vlgsrG54XGnuAvpYKuhqRA1coOyl0C7VSbUmU7ijtVM0saipbAVaovtaaW-wapcUJudzqjlO3xr-2WEcYzBjdGuKTCeDM_xXvVuY-zEZRpetWFIHzrcDqxbW7q6XZ5ChnrWyUmllhP-_MYnicMGWzdsniMIDHMCXDWqEkVS2nBf30An0IU_TlKwqlNdV62_3O3MaQyvj6fQeMms1MzX6mhf14-NI9-W-CBfiyBVIp-XuMB5av1J4ByCurkA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899099759</pqid></control><display><type>article</type><title>Riboflavin photoactivation by upconversion nanoparticles for cancer treatment</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Khaydukov, E. V. ; Mironova, K. E. ; Semchishen, V. A. ; Generalova, A. N. ; Nechaev, A. V. ; Khochenkov, D. A. ; Stepanova, E. V. ; Lebedev, O. I. ; Zvyagin, A. V. ; Deyev, S. M. ; Panchenko, V. Ya</creator><creatorcontrib>Khaydukov, E. V. ; Mironova, K. E. ; Semchishen, V. A. ; Generalova, A. N. ; Nechaev, A. V. ; Khochenkov, D. A. ; Stepanova, E. V. ; Lebedev, O. I. ; Zvyagin, A. V. ; Deyev, S. M. ; Panchenko, V. Ya</creatorcontrib><description>Riboflavin (Rf) is a vitamin and endogenous photosensitizer capable to generate reactive oxygen species (ROS) under UV-blue irradiation and kill cancer cells, which are characterized by the enhanced uptake of Rf. We confirmed its phototoxicity on human breast adenocarcinoma cells SK-BR-3 preincubated with 30-μM Rf and irradiated with ultraviolet light, and proved that such Rf concentrations (60 μM) are attainable
in vivo
in tumour site by systemic intravascular injection. In order to extend the Rf photosensitization depth in cancer tissue to 6 mm in depth, we purpose-designed core/shell upconversion nanoparticles (UCNPs, NaYF
4
:Yb
3+
:Tm
3+
/NaYF
4
) capable to convert 2% of the deeply-penetrating excitation at 975 nm to ultraviolet-blue power. This power was expended to photosensitise Rf and kill SK-BR-3 cells preincubated with UCNPs and Rf, where the UCNP-Rf energy transfer was photon-mediated with ~14% Förster process contribution. SK-BR-3 xenograft regression in mice was observed for 50 days, following the Rf-UCNPs peritumoural injection and near-infrared light photodynamic treatment of the lesions.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep35103</identifier><identifier>PMID: 27731350</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/2 ; 13/31 ; 14/28 ; 14/33 ; 59/5 ; 631/67/1059/153 ; 639/624/1111/55 ; 64/60 ; Animals ; Breast cancer ; Breast Neoplasms - drug therapy ; Cancer ; Cancer therapies ; Carcinoma, Lewis Lung - drug therapy ; Cell Line, Tumor ; Cell Survival - drug effects ; Chemical Sciences ; CHO Cells ; Cricetulus ; Cristallography ; Energy transfer ; Female ; Fluorides - chemistry ; Humanities and Social Sciences ; Humans ; Injection ; Irradiation ; Material chemistry ; Metal Nanoparticles - chemistry ; Metal Nanoparticles - therapeutic use ; Mice ; Mice, Inbred C57BL ; Mice, Inbred DBA ; multidisciplinary ; Nanoparticles ; Neoplasms, Experimental - drug therapy ; Neoplasms, Experimental - metabolism ; Neoplasms, Experimental - pathology ; or physical chemistry ; Photoactivation ; Photochemotherapy - methods ; Photosensitizing Agents - therapeutic use ; Phototoxicity ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Riboflavin - therapeutic use ; Science ; Theoretical and ; Thulium - chemistry ; Ultraviolet radiation ; Xenograft Model Antitumor Assays ; Xenografts ; Ytterbium - chemistry ; Yttrium - chemistry</subject><ispartof>Scientific reports, 2016-10, Vol.6 (1), p.35103-35103, Article 35103</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Oct 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2016, The Author(s) 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-9efaaf645ab6ee2a25e4b4398a6558e2a73100b561ce90483ac35f6992ceb7593</citedby><cites>FETCH-LOGICAL-c472t-9efaaf645ab6ee2a25e4b4398a6558e2a73100b561ce90483ac35f6992ceb7593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5059683/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5059683/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,41101,42170,51557,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27731350$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://normandie-univ.hal.science/hal-02184755$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Khaydukov, E. V.</creatorcontrib><creatorcontrib>Mironova, K. E.</creatorcontrib><creatorcontrib>Semchishen, V. A.</creatorcontrib><creatorcontrib>Generalova, A. N.</creatorcontrib><creatorcontrib>Nechaev, A. V.</creatorcontrib><creatorcontrib>Khochenkov, D. A.</creatorcontrib><creatorcontrib>Stepanova, E. V.</creatorcontrib><creatorcontrib>Lebedev, O. I.</creatorcontrib><creatorcontrib>Zvyagin, A. V.</creatorcontrib><creatorcontrib>Deyev, S. M.</creatorcontrib><creatorcontrib>Panchenko, V. Ya</creatorcontrib><title>Riboflavin photoactivation by upconversion nanoparticles for cancer treatment</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Riboflavin (Rf) is a vitamin and endogenous photosensitizer capable to generate reactive oxygen species (ROS) under UV-blue irradiation and kill cancer cells, which are characterized by the enhanced uptake of Rf. We confirmed its phototoxicity on human breast adenocarcinoma cells SK-BR-3 preincubated with 30-μM Rf and irradiated with ultraviolet light, and proved that such Rf concentrations (60 μM) are attainable
in vivo
in tumour site by systemic intravascular injection. In order to extend the Rf photosensitization depth in cancer tissue to 6 mm in depth, we purpose-designed core/shell upconversion nanoparticles (UCNPs, NaYF
4
:Yb
3+
:Tm
3+
/NaYF
4
) capable to convert 2% of the deeply-penetrating excitation at 975 nm to ultraviolet-blue power. This power was expended to photosensitise Rf and kill SK-BR-3 cells preincubated with UCNPs and Rf, where the UCNP-Rf energy transfer was photon-mediated with ~14% Förster process contribution. SK-BR-3 xenograft regression in mice was observed for 50 days, following the Rf-UCNPs peritumoural injection and near-infrared light photodynamic treatment of the lesions.</description><subject>13/2</subject><subject>13/31</subject><subject>14/28</subject><subject>14/33</subject><subject>59/5</subject><subject>631/67/1059/153</subject><subject>639/624/1111/55</subject><subject>64/60</subject><subject>Animals</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - drug therapy</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Carcinoma, Lewis Lung - drug therapy</subject><subject>Cell Line, Tumor</subject><subject>Cell Survival - drug effects</subject><subject>Chemical Sciences</subject><subject>CHO Cells</subject><subject>Cricetulus</subject><subject>Cristallography</subject><subject>Energy transfer</subject><subject>Female</subject><subject>Fluorides - chemistry</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Injection</subject><subject>Irradiation</subject><subject>Material chemistry</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metal Nanoparticles - therapeutic use</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Inbred DBA</subject><subject>multidisciplinary</subject><subject>Nanoparticles</subject><subject>Neoplasms, Experimental - drug therapy</subject><subject>Neoplasms, Experimental - metabolism</subject><subject>Neoplasms, Experimental - pathology</subject><subject>or physical chemistry</subject><subject>Photoactivation</subject><subject>Photochemotherapy - methods</subject><subject>Photosensitizing Agents - therapeutic use</subject><subject>Phototoxicity</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Riboflavin - therapeutic use</subject><subject>Science</subject><subject>Theoretical and</subject><subject>Thulium - chemistry</subject><subject>Ultraviolet radiation</subject><subject>Xenograft Model Antitumor Assays</subject><subject>Xenografts</subject><subject>Ytterbium - chemistry</subject><subject>Yttrium - chemistry</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkU1r3DAQhkVpaUKSQ_9AMfTSFDbVp21dAiEkTWFLobRnMVbHWQWv5EiyIf8-Wna7bBNdNJp59L4jDSEfGL1gVLRfU8RRqBK-IcecSrXggvO3B_EROUvpgZaluJZMvydHvGkEE4oekx-_XBf6AWbnq3EVcgCb3QzZBV91T9U02uBnjGlz9uDDCDE7O2Cq-hArC95irHJEyGv0-ZS862FIeLbbT8if25vf13eL5c9v36-vlgsrG54XGnuAvpYKuhqRA1coOyl0C7VSbUmU7ijtVM0saipbAVaovtaaW-wapcUJudzqjlO3xr-2WEcYzBjdGuKTCeDM_xXvVuY-zEZRpetWFIHzrcDqxbW7q6XZ5ChnrWyUmllhP-_MYnicMGWzdsniMIDHMCXDWqEkVS2nBf30An0IU_TlKwqlNdV62_3O3MaQyvj6fQeMms1MzX6mhf14-NI9-W-CBfiyBVIp-XuMB5av1J4ByCurkA</recordid><startdate>20161012</startdate><enddate>20161012</enddate><creator>Khaydukov, E. V.</creator><creator>Mironova, K. E.</creator><creator>Semchishen, V. A.</creator><creator>Generalova, A. N.</creator><creator>Nechaev, A. V.</creator><creator>Khochenkov, D. A.</creator><creator>Stepanova, E. V.</creator><creator>Lebedev, O. I.</creator><creator>Zvyagin, A. V.</creator><creator>Deyev, S. M.</creator><creator>Panchenko, V. Ya</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope></search><sort><creationdate>20161012</creationdate><title>Riboflavin photoactivation by upconversion nanoparticles for cancer treatment</title><author>Khaydukov, E. V. ; Mironova, K. E. ; Semchishen, V. A. ; Generalova, A. N. ; Nechaev, A. V. ; Khochenkov, D. A. ; Stepanova, E. V. ; Lebedev, O. I. ; Zvyagin, A. V. ; Deyev, S. M. ; Panchenko, V. Ya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-9efaaf645ab6ee2a25e4b4398a6558e2a73100b561ce90483ac35f6992ceb7593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>13/2</topic><topic>13/31</topic><topic>14/28</topic><topic>14/33</topic><topic>59/5</topic><topic>631/67/1059/153</topic><topic>639/624/1111/55</topic><topic>64/60</topic><topic>Animals</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - drug therapy</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Carcinoma, Lewis Lung - drug therapy</topic><topic>Cell Line, Tumor</topic><topic>Cell Survival - drug effects</topic><topic>Chemical Sciences</topic><topic>CHO Cells</topic><topic>Cricetulus</topic><topic>Cristallography</topic><topic>Energy transfer</topic><topic>Female</topic><topic>Fluorides - chemistry</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Injection</topic><topic>Irradiation</topic><topic>Material chemistry</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metal Nanoparticles - therapeutic use</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Inbred DBA</topic><topic>multidisciplinary</topic><topic>Nanoparticles</topic><topic>Neoplasms, Experimental - drug therapy</topic><topic>Neoplasms, Experimental - metabolism</topic><topic>Neoplasms, Experimental - pathology</topic><topic>or physical chemistry</topic><topic>Photoactivation</topic><topic>Photochemotherapy - methods</topic><topic>Photosensitizing Agents - therapeutic use</topic><topic>Phototoxicity</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Riboflavin - therapeutic use</topic><topic>Science</topic><topic>Theoretical and</topic><topic>Thulium - chemistry</topic><topic>Ultraviolet radiation</topic><topic>Xenograft Model Antitumor Assays</topic><topic>Xenografts</topic><topic>Ytterbium - chemistry</topic><topic>Yttrium - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khaydukov, E. V.</creatorcontrib><creatorcontrib>Mironova, K. E.</creatorcontrib><creatorcontrib>Semchishen, V. A.</creatorcontrib><creatorcontrib>Generalova, A. N.</creatorcontrib><creatorcontrib>Nechaev, A. V.</creatorcontrib><creatorcontrib>Khochenkov, D. A.</creatorcontrib><creatorcontrib>Stepanova, E. V.</creatorcontrib><creatorcontrib>Lebedev, O. I.</creatorcontrib><creatorcontrib>Zvyagin, A. V.</creatorcontrib><creatorcontrib>Deyev, S. M.</creatorcontrib><creatorcontrib>Panchenko, V. Ya</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khaydukov, E. V.</au><au>Mironova, K. E.</au><au>Semchishen, V. A.</au><au>Generalova, A. N.</au><au>Nechaev, A. V.</au><au>Khochenkov, D. A.</au><au>Stepanova, E. V.</au><au>Lebedev, O. I.</au><au>Zvyagin, A. V.</au><au>Deyev, S. M.</au><au>Panchenko, V. Ya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Riboflavin photoactivation by upconversion nanoparticles for cancer treatment</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-10-12</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>35103</spage><epage>35103</epage><pages>35103-35103</pages><artnum>35103</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Riboflavin (Rf) is a vitamin and endogenous photosensitizer capable to generate reactive oxygen species (ROS) under UV-blue irradiation and kill cancer cells, which are characterized by the enhanced uptake of Rf. We confirmed its phototoxicity on human breast adenocarcinoma cells SK-BR-3 preincubated with 30-μM Rf and irradiated with ultraviolet light, and proved that such Rf concentrations (60 μM) are attainable
in vivo
in tumour site by systemic intravascular injection. In order to extend the Rf photosensitization depth in cancer tissue to 6 mm in depth, we purpose-designed core/shell upconversion nanoparticles (UCNPs, NaYF
4
:Yb
3+
:Tm
3+
/NaYF
4
) capable to convert 2% of the deeply-penetrating excitation at 975 nm to ultraviolet-blue power. This power was expended to photosensitise Rf and kill SK-BR-3 cells preincubated with UCNPs and Rf, where the UCNP-Rf energy transfer was photon-mediated with ~14% Förster process contribution. SK-BR-3 xenograft regression in mice was observed for 50 days, following the Rf-UCNPs peritumoural injection and near-infrared light photodynamic treatment of the lesions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27731350</pmid><doi>10.1038/srep35103</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-10, Vol.6 (1), p.35103-35103, Article 35103 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5059683 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 13/2 13/31 14/28 14/33 59/5 631/67/1059/153 639/624/1111/55 64/60 Animals Breast cancer Breast Neoplasms - drug therapy Cancer Cancer therapies Carcinoma, Lewis Lung - drug therapy Cell Line, Tumor Cell Survival - drug effects Chemical Sciences CHO Cells Cricetulus Cristallography Energy transfer Female Fluorides - chemistry Humanities and Social Sciences Humans Injection Irradiation Material chemistry Metal Nanoparticles - chemistry Metal Nanoparticles - therapeutic use Mice Mice, Inbred C57BL Mice, Inbred DBA multidisciplinary Nanoparticles Neoplasms, Experimental - drug therapy Neoplasms, Experimental - metabolism Neoplasms, Experimental - pathology or physical chemistry Photoactivation Photochemotherapy - methods Photosensitizing Agents - therapeutic use Phototoxicity Reactive oxygen species Reactive Oxygen Species - metabolism Riboflavin - therapeutic use Science Theoretical and Thulium - chemistry Ultraviolet radiation Xenograft Model Antitumor Assays Xenografts Ytterbium - chemistry Yttrium - chemistry |
title | Riboflavin photoactivation by upconversion nanoparticles for cancer treatment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A20%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Riboflavin%20photoactivation%20by%20upconversion%20nanoparticles%20for%20cancer%20treatment&rft.jtitle=Scientific%20reports&rft.au=Khaydukov,%20E.%20V.&rft.date=2016-10-12&rft.volume=6&rft.issue=1&rft.spage=35103&rft.epage=35103&rft.pages=35103-35103&rft.artnum=35103&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep35103&rft_dat=%3Cproquest_pubme%3E1835405820%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899099759&rft_id=info:pmid/27731350&rfr_iscdi=true |