Gaze shift duration, independent of amplitude, influences the number of spikes in the burst for medium-lead burst neurons in pontine reticular formation

Changes in the direction of the line of sight (gaze) allow successive sampling of the visual environment. Saccadic eye movements accomplish this goal when the head does not move. Medium-lead burst neurons (MLBs) in the paramedian pontine reticular formation (PPRF) discharge a high frequency burst of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental brain research 2011-10, Vol.214 (2), p.225-239
Hauptverfasser: Walton, Mark M. G., Freedman, Edward G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 239
container_issue 2
container_start_page 225
container_title Experimental brain research
container_volume 214
creator Walton, Mark M. G.
Freedman, Edward G.
description Changes in the direction of the line of sight (gaze) allow successive sampling of the visual environment. Saccadic eye movements accomplish this goal when the head does not move. Medium-lead burst neurons (MLBs) in the paramedian pontine reticular formation (PPRF) discharge a high frequency burst of action potentials starting ~12 ms before the saccade begins. A subgroup of MLBs rostral of abducens nucleus monosynaptically excites oculomotor neurons. The number of spikes in the presaccadic burst is correlated with the amplitude of the horizontal component of the saccade, and the peak discharge rate is correlated with peak eye velocity. During head-unrestrained gaze shifts, a linear relationship between the number of action potentials in MLB bursts and gaze (but not eye) amplitude has been reported. The anatomical connection of MLBs to motor neurons and the similarity between the phasic motor neuron burst and MLB discharge have raised questions about the usefulness of counting spikes in MLBs to determine their role in eye-head coordination. We investigated this issue using a behavioral technique that permits a dissociation of eye movement amplitude and duration during constant vector gaze shifts. Surprisingly, during gaze shifts of constant amplitude and direction, we observe a nearly linear, positive correlation between saccade duration and spike number associated with a negative correlation between spike number and saccade amplitude. These data constrain models of the oculomotor controller and may further define the time-dependence of hypothesized neural integration in this system.
doi_str_mv 10.1007/s00221-011-2823-8
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5057534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A404895283</galeid><sourcerecordid>A404895283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c630t-ee1dfd95cf14f8414829871899a5e6c0e65724ba3438c42a480ed0586744a23a3</originalsourceid><addsrcrecordid>eNp1kmuL1DAUhoso7jj6A_wiRVER7Jpb2_SLsCy6LiwIXj6HTHo6kzVNai6i_hJ_runMuLsjSiAh5zzvSXLyFsVDjI4xQu2rgBAhuEIYV4QTWvFbxQIzSiqMUXO7WCCEWcU47o6KeyFczlvaorvFEcGcEYbRovh1Jn9CGTZ6iGWfvIza2Zeltj1MkCcbSzeUcpyMjqmHOTOYBFZBKOMGSpvGFfiZCZP-koPabuOr5EMsB-fLEXqdxsqA7PdRC8k7u0UnZ6O2UHqIWiUj_SwZt5e4X9wZpAnwYL8ui89v33w6fVddvD87Pz25qFRDUawAcD_0Xa0GzAbOMOOk4y3mXSdraBSCpm4JW0nKKFeMSMYR9KjmTcuYJFTSZfF6V3dKq3xXlZ_spRGT16P0P4STWhxmrN6ItfsmalS3dS67LJ7vC3j3NUGIYtRBgTHSgktB8A41bUtrlMnHf5GXLnmbXzdDmaKszdCTHbSWBkRut8unqrmkOGGI8a4mnGbq-B9UHj2MWjkLg87xA8GLA0FmInyPa5lCEOcfPxyyz26wG5AmboIzaf6WcAjiHai8C8HDcNU2jMTsULFzqMgOFbNDBc-aRzf7faX4Y8kMPN0DMihpBi-t0uGaY3VDadtkjuy4kFN2Df66m_8__TfSsP1W</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>890067347</pqid></control><display><type>article</type><title>Gaze shift duration, independent of amplitude, influences the number of spikes in the burst for medium-lead burst neurons in pontine reticular formation</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Walton, Mark M. G. ; Freedman, Edward G.</creator><creatorcontrib>Walton, Mark M. G. ; Freedman, Edward G.</creatorcontrib><description>Changes in the direction of the line of sight (gaze) allow successive sampling of the visual environment. Saccadic eye movements accomplish this goal when the head does not move. Medium-lead burst neurons (MLBs) in the paramedian pontine reticular formation (PPRF) discharge a high frequency burst of action potentials starting ~12 ms before the saccade begins. A subgroup of MLBs rostral of abducens nucleus monosynaptically excites oculomotor neurons. The number of spikes in the presaccadic burst is correlated with the amplitude of the horizontal component of the saccade, and the peak discharge rate is correlated with peak eye velocity. During head-unrestrained gaze shifts, a linear relationship between the number of action potentials in MLB bursts and gaze (but not eye) amplitude has been reported. The anatomical connection of MLBs to motor neurons and the similarity between the phasic motor neuron burst and MLB discharge have raised questions about the usefulness of counting spikes in MLBs to determine their role in eye-head coordination. We investigated this issue using a behavioral technique that permits a dissociation of eye movement amplitude and duration during constant vector gaze shifts. Surprisingly, during gaze shifts of constant amplitude and direction, we observe a nearly linear, positive correlation between saccade duration and spike number associated with a negative correlation between spike number and saccade amplitude. These data constrain models of the oculomotor controller and may further define the time-dependence of hypothesized neural integration in this system.</description><identifier>ISSN: 0014-4819</identifier><identifier>EISSN: 1432-1106</identifier><identifier>DOI: 10.1007/s00221-011-2823-8</identifier><identifier>PMID: 21842410</identifier><identifier>CODEN: EXBRAP</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Action Potentials - physiology ; Animals ; Biological and medical sciences ; Biomedical and Life Sciences ; Biomedicine ; Eye and associated structures. Visual pathways and centers. Vision ; Eye movements ; Female ; Fundamental and applied biological sciences. Psychology ; Gaze ; Head Movements - physiology ; Hypotheses ; Macaca mulatta ; Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration ; Neural transmission ; Neurology ; Neurons ; Neurons - physiology ; Neurosciences ; Physiological aspects ; Pons ; Pons - cytology ; Pons - physiology ; Psychomotor Performance - physiology ; Regulation ; Research Article ; Reticular Formation - physiology ; Saccades (Eye movements) ; Saccades - physiology ; Time Factors ; Velocity ; Vertebrates: nervous system and sense organs</subject><ispartof>Experimental brain research, 2011-10, Vol.214 (2), p.225-239</ispartof><rights>Springer-Verlag 2011</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2011 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c630t-ee1dfd95cf14f8414829871899a5e6c0e65724ba3438c42a480ed0586744a23a3</citedby><cites>FETCH-LOGICAL-c630t-ee1dfd95cf14f8414829871899a5e6c0e65724ba3438c42a480ed0586744a23a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00221-011-2823-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00221-011-2823-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24563376$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21842410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Walton, Mark M. G.</creatorcontrib><creatorcontrib>Freedman, Edward G.</creatorcontrib><title>Gaze shift duration, independent of amplitude, influences the number of spikes in the burst for medium-lead burst neurons in pontine reticular formation</title><title>Experimental brain research</title><addtitle>Exp Brain Res</addtitle><addtitle>Exp Brain Res</addtitle><description>Changes in the direction of the line of sight (gaze) allow successive sampling of the visual environment. Saccadic eye movements accomplish this goal when the head does not move. Medium-lead burst neurons (MLBs) in the paramedian pontine reticular formation (PPRF) discharge a high frequency burst of action potentials starting ~12 ms before the saccade begins. A subgroup of MLBs rostral of abducens nucleus monosynaptically excites oculomotor neurons. The number of spikes in the presaccadic burst is correlated with the amplitude of the horizontal component of the saccade, and the peak discharge rate is correlated with peak eye velocity. During head-unrestrained gaze shifts, a linear relationship between the number of action potentials in MLB bursts and gaze (but not eye) amplitude has been reported. The anatomical connection of MLBs to motor neurons and the similarity between the phasic motor neuron burst and MLB discharge have raised questions about the usefulness of counting spikes in MLBs to determine their role in eye-head coordination. We investigated this issue using a behavioral technique that permits a dissociation of eye movement amplitude and duration during constant vector gaze shifts. Surprisingly, during gaze shifts of constant amplitude and direction, we observe a nearly linear, positive correlation between saccade duration and spike number associated with a negative correlation between spike number and saccade amplitude. These data constrain models of the oculomotor controller and may further define the time-dependence of hypothesized neural integration in this system.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Eye and associated structures. Visual pathways and centers. Vision</subject><subject>Eye movements</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gaze</subject><subject>Head Movements - physiology</subject><subject>Hypotheses</subject><subject>Macaca mulatta</subject><subject>Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration</subject><subject>Neural transmission</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neurosciences</subject><subject>Physiological aspects</subject><subject>Pons</subject><subject>Pons - cytology</subject><subject>Pons - physiology</subject><subject>Psychomotor Performance - physiology</subject><subject>Regulation</subject><subject>Research Article</subject><subject>Reticular Formation - physiology</subject><subject>Saccades (Eye movements)</subject><subject>Saccades - physiology</subject><subject>Time Factors</subject><subject>Velocity</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0014-4819</issn><issn>1432-1106</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kmuL1DAUhoso7jj6A_wiRVER7Jpb2_SLsCy6LiwIXj6HTHo6kzVNai6i_hJ_runMuLsjSiAh5zzvSXLyFsVDjI4xQu2rgBAhuEIYV4QTWvFbxQIzSiqMUXO7WCCEWcU47o6KeyFczlvaorvFEcGcEYbRovh1Jn9CGTZ6iGWfvIza2Zeltj1MkCcbSzeUcpyMjqmHOTOYBFZBKOMGSpvGFfiZCZP-koPabuOr5EMsB-fLEXqdxsqA7PdRC8k7u0UnZ6O2UHqIWiUj_SwZt5e4X9wZpAnwYL8ui89v33w6fVddvD87Pz25qFRDUawAcD_0Xa0GzAbOMOOk4y3mXSdraBSCpm4JW0nKKFeMSMYR9KjmTcuYJFTSZfF6V3dKq3xXlZ_spRGT16P0P4STWhxmrN6ItfsmalS3dS67LJ7vC3j3NUGIYtRBgTHSgktB8A41bUtrlMnHf5GXLnmbXzdDmaKszdCTHbSWBkRut8unqrmkOGGI8a4mnGbq-B9UHj2MWjkLg87xA8GLA0FmInyPa5lCEOcfPxyyz26wG5AmboIzaf6WcAjiHai8C8HDcNU2jMTsULFzqMgOFbNDBc-aRzf7faX4Y8kMPN0DMihpBi-t0uGaY3VDadtkjuy4kFN2Df66m_8__TfSsP1W</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Walton, Mark M. G.</creator><creator>Freedman, Edward G.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>0-V</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>88J</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2R</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111001</creationdate><title>Gaze shift duration, independent of amplitude, influences the number of spikes in the burst for medium-lead burst neurons in pontine reticular formation</title><author>Walton, Mark M. G. ; Freedman, Edward G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c630t-ee1dfd95cf14f8414829871899a5e6c0e65724ba3438c42a480ed0586744a23a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Eye and associated structures. Visual pathways and centers. Vision</topic><topic>Eye movements</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gaze</topic><topic>Head Movements - physiology</topic><topic>Hypotheses</topic><topic>Macaca mulatta</topic><topic>Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration</topic><topic>Neural transmission</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neurosciences</topic><topic>Physiological aspects</topic><topic>Pons</topic><topic>Pons - cytology</topic><topic>Pons - physiology</topic><topic>Psychomotor Performance - physiology</topic><topic>Regulation</topic><topic>Research Article</topic><topic>Reticular Formation - physiology</topic><topic>Saccades (Eye movements)</topic><topic>Saccades - physiology</topic><topic>Time Factors</topic><topic>Velocity</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walton, Mark M. G.</creatorcontrib><creatorcontrib>Freedman, Edward G.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Social Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Experimental brain research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walton, Mark M. G.</au><au>Freedman, Edward G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gaze shift duration, independent of amplitude, influences the number of spikes in the burst for medium-lead burst neurons in pontine reticular formation</atitle><jtitle>Experimental brain research</jtitle><stitle>Exp Brain Res</stitle><addtitle>Exp Brain Res</addtitle><date>2011-10-01</date><risdate>2011</risdate><volume>214</volume><issue>2</issue><spage>225</spage><epage>239</epage><pages>225-239</pages><issn>0014-4819</issn><eissn>1432-1106</eissn><coden>EXBRAP</coden><abstract>Changes in the direction of the line of sight (gaze) allow successive sampling of the visual environment. Saccadic eye movements accomplish this goal when the head does not move. Medium-lead burst neurons (MLBs) in the paramedian pontine reticular formation (PPRF) discharge a high frequency burst of action potentials starting ~12 ms before the saccade begins. A subgroup of MLBs rostral of abducens nucleus monosynaptically excites oculomotor neurons. The number of spikes in the presaccadic burst is correlated with the amplitude of the horizontal component of the saccade, and the peak discharge rate is correlated with peak eye velocity. During head-unrestrained gaze shifts, a linear relationship between the number of action potentials in MLB bursts and gaze (but not eye) amplitude has been reported. The anatomical connection of MLBs to motor neurons and the similarity between the phasic motor neuron burst and MLB discharge have raised questions about the usefulness of counting spikes in MLBs to determine their role in eye-head coordination. We investigated this issue using a behavioral technique that permits a dissociation of eye movement amplitude and duration during constant vector gaze shifts. Surprisingly, during gaze shifts of constant amplitude and direction, we observe a nearly linear, positive correlation between saccade duration and spike number associated with a negative correlation between spike number and saccade amplitude. These data constrain models of the oculomotor controller and may further define the time-dependence of hypothesized neural integration in this system.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>21842410</pmid><doi>10.1007/s00221-011-2823-8</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-4819
ispartof Experimental brain research, 2011-10, Vol.214 (2), p.225-239
issn 0014-4819
1432-1106
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5057534
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Action Potentials - physiology
Animals
Biological and medical sciences
Biomedical and Life Sciences
Biomedicine
Eye and associated structures. Visual pathways and centers. Vision
Eye movements
Female
Fundamental and applied biological sciences. Psychology
Gaze
Head Movements - physiology
Hypotheses
Macaca mulatta
Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration
Neural transmission
Neurology
Neurons
Neurons - physiology
Neurosciences
Physiological aspects
Pons
Pons - cytology
Pons - physiology
Psychomotor Performance - physiology
Regulation
Research Article
Reticular Formation - physiology
Saccades (Eye movements)
Saccades - physiology
Time Factors
Velocity
Vertebrates: nervous system and sense organs
title Gaze shift duration, independent of amplitude, influences the number of spikes in the burst for medium-lead burst neurons in pontine reticular formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T13%3A53%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gaze%20shift%20duration,%20independent%20of%20amplitude,%20influences%20the%20number%20of%20spikes%20in%20the%20burst%20for%20medium-lead%20burst%20neurons%20in%20pontine%20reticular%20formation&rft.jtitle=Experimental%20brain%20research&rft.au=Walton,%20Mark%20M.%20G.&rft.date=2011-10-01&rft.volume=214&rft.issue=2&rft.spage=225&rft.epage=239&rft.pages=225-239&rft.issn=0014-4819&rft.eissn=1432-1106&rft.coden=EXBRAP&rft_id=info:doi/10.1007/s00221-011-2823-8&rft_dat=%3Cgale_pubme%3EA404895283%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=890067347&rft_id=info:pmid/21842410&rft_galeid=A404895283&rfr_iscdi=true