Sufficient Sample Size and Power in Multilevel Ordinal Logistic Regression Models
For most of the time, biomedical researchers have been dealing with ordinal outcome variable in multilevel models where patients are nested in doctors. We can justifiably apply multilevel cumulative logit model, where the outcome variable represents the mild, severe, and extremely severe intensity o...
Gespeichert in:
Veröffentlicht in: | Computational and mathematical methods in medicine 2016-01, Vol.2016 (2016), p.1-8 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 2016 |
container_start_page | 1 |
container_title | Computational and mathematical methods in medicine |
container_volume | 2016 |
creator | Hussain, Sundas Khan, Sajjad Ahmad Ali, Amjad Ali, Sabz |
description | For most of the time, biomedical researchers have been dealing with ordinal outcome variable in multilevel models where patients are nested in doctors. We can justifiably apply multilevel cumulative logit model, where the outcome variable represents the mild, severe, and extremely severe intensity of diseases like malaria and typhoid in the form of ordered categories. Based on our simulation conditions, Maximum Likelihood (ML) method is better than Penalized Quasilikelihood (PQL) method in three-category ordinal outcome variable. PQL method, however, performs equally well as ML method where five-category ordinal outcome variable is used. Further, to achieve power more than 0.80, at least 50 groups are required for both ML and PQL methods of estimation. It may be pointed out that, for five-category ordinal response variable model, the power of PQL method is slightly higher than the power of ML method. |
doi_str_mv | 10.1155/2016/7329158 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5056003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835441357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-cded2f0cb95041d9ad2e2ee2d974a6691b4f1c92233c927586c26480637d6fee3</originalsourceid><addsrcrecordid>eNqN0c1rFDEYBvAgFvuhN8-So2DX5s3nzEWQ4kdhS9VV8BayyTvbSHayTWZa9K93ym5XvXlJAvnx5OMh5Dmw1wBKnXEG-swI3oJqHpEjMLKZaQPN4_2afT8kx7X-YEyBUfCEHHJjpG64PiKfF2PXRR-xH-jCrTcJ6SL-Qur6QD_lOyw09vRyTENMeIuJXpUQe5foPK9iHaKnX3BVsNaYJ5YDpvqUHHQuVXy2m0_It_fvvp5_nM2vPlycv53PvJRimPmAgXfML1vFJITWBY4ckYfWSKd1C0vZgW85F2IajWq051o2TAsTdIcoTsibbe5mXK4x-OkFxSW7KXHtyk-bXbT_7vTx2q7yrVVMacbEFPByF1DyzYh1sOtYPabkesxjtdAIJSUIZSZ6uqW-5FoLdvtjgNn7Fux9C3bXwsRf_H21PX749gm82oLr2Ad3F_8zDieDnfujgTFotPgNDlaaNA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835441357</pqid></control><display><type>article</type><title>Sufficient Sample Size and Power in Multilevel Ordinal Logistic Regression Models</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Hussain, Sundas ; Khan, Sajjad Ahmad ; Ali, Amjad ; Ali, Sabz</creator><contributor>Bursac, Zoran</contributor><creatorcontrib>Hussain, Sundas ; Khan, Sajjad Ahmad ; Ali, Amjad ; Ali, Sabz ; Bursac, Zoran</creatorcontrib><description>For most of the time, biomedical researchers have been dealing with ordinal outcome variable in multilevel models where patients are nested in doctors. We can justifiably apply multilevel cumulative logit model, where the outcome variable represents the mild, severe, and extremely severe intensity of diseases like malaria and typhoid in the form of ordered categories. Based on our simulation conditions, Maximum Likelihood (ML) method is better than Penalized Quasilikelihood (PQL) method in three-category ordinal outcome variable. PQL method, however, performs equally well as ML method where five-category ordinal outcome variable is used. Further, to achieve power more than 0.80, at least 50 groups are required for both ML and PQL methods of estimation. It may be pointed out that, for five-category ordinal response variable model, the power of PQL method is slightly higher than the power of ML method.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2016/7329158</identifier><identifier>PMID: 27746826</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Biomedical Research - methods ; Biomedical Research - standards ; Computer Simulation ; Data Collection ; Data Interpretation, Statistical ; Humans ; Likelihood Functions ; Malaria - therapy ; Models, Statistical ; Multilevel Analysis - methods ; Regression Analysis ; Reproducibility of Results ; Research Design ; Sample Size ; Statistics as Topic ; Treatment Outcome ; Typhoid Fever - therapy</subject><ispartof>Computational and mathematical methods in medicine, 2016-01, Vol.2016 (2016), p.1-8</ispartof><rights>Copyright © 2016 Sabz Ali et al.</rights><rights>Copyright © 2016 Sabz Ali et al. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-cded2f0cb95041d9ad2e2ee2d974a6691b4f1c92233c927586c26480637d6fee3</citedby><cites>FETCH-LOGICAL-c443t-cded2f0cb95041d9ad2e2ee2d974a6691b4f1c92233c927586c26480637d6fee3</cites><orcidid>0000-0002-9702-9023</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5056003/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5056003/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27746826$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bursac, Zoran</contributor><creatorcontrib>Hussain, Sundas</creatorcontrib><creatorcontrib>Khan, Sajjad Ahmad</creatorcontrib><creatorcontrib>Ali, Amjad</creatorcontrib><creatorcontrib>Ali, Sabz</creatorcontrib><title>Sufficient Sample Size and Power in Multilevel Ordinal Logistic Regression Models</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>For most of the time, biomedical researchers have been dealing with ordinal outcome variable in multilevel models where patients are nested in doctors. We can justifiably apply multilevel cumulative logit model, where the outcome variable represents the mild, severe, and extremely severe intensity of diseases like malaria and typhoid in the form of ordered categories. Based on our simulation conditions, Maximum Likelihood (ML) method is better than Penalized Quasilikelihood (PQL) method in three-category ordinal outcome variable. PQL method, however, performs equally well as ML method where five-category ordinal outcome variable is used. Further, to achieve power more than 0.80, at least 50 groups are required for both ML and PQL methods of estimation. It may be pointed out that, for five-category ordinal response variable model, the power of PQL method is slightly higher than the power of ML method.</description><subject>Algorithms</subject><subject>Biomedical Research - methods</subject><subject>Biomedical Research - standards</subject><subject>Computer Simulation</subject><subject>Data Collection</subject><subject>Data Interpretation, Statistical</subject><subject>Humans</subject><subject>Likelihood Functions</subject><subject>Malaria - therapy</subject><subject>Models, Statistical</subject><subject>Multilevel Analysis - methods</subject><subject>Regression Analysis</subject><subject>Reproducibility of Results</subject><subject>Research Design</subject><subject>Sample Size</subject><subject>Statistics as Topic</subject><subject>Treatment Outcome</subject><subject>Typhoid Fever - therapy</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqN0c1rFDEYBvAgFvuhN8-So2DX5s3nzEWQ4kdhS9VV8BayyTvbSHayTWZa9K93ym5XvXlJAvnx5OMh5Dmw1wBKnXEG-swI3oJqHpEjMLKZaQPN4_2afT8kx7X-YEyBUfCEHHJjpG64PiKfF2PXRR-xH-jCrTcJ6SL-Qur6QD_lOyw09vRyTENMeIuJXpUQe5foPK9iHaKnX3BVsNaYJ5YDpvqUHHQuVXy2m0_It_fvvp5_nM2vPlycv53PvJRimPmAgXfML1vFJITWBY4ckYfWSKd1C0vZgW85F2IajWq051o2TAsTdIcoTsibbe5mXK4x-OkFxSW7KXHtyk-bXbT_7vTx2q7yrVVMacbEFPByF1DyzYh1sOtYPabkesxjtdAIJSUIZSZ6uqW-5FoLdvtjgNn7Fux9C3bXwsRf_H21PX749gm82oLr2Ad3F_8zDieDnfujgTFotPgNDlaaNA</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Hussain, Sundas</creator><creator>Khan, Sajjad Ahmad</creator><creator>Ali, Amjad</creator><creator>Ali, Sabz</creator><general>Hindawi Publishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9702-9023</orcidid></search><sort><creationdate>20160101</creationdate><title>Sufficient Sample Size and Power in Multilevel Ordinal Logistic Regression Models</title><author>Hussain, Sundas ; Khan, Sajjad Ahmad ; Ali, Amjad ; Ali, Sabz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-cded2f0cb95041d9ad2e2ee2d974a6691b4f1c92233c927586c26480637d6fee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Biomedical Research - methods</topic><topic>Biomedical Research - standards</topic><topic>Computer Simulation</topic><topic>Data Collection</topic><topic>Data Interpretation, Statistical</topic><topic>Humans</topic><topic>Likelihood Functions</topic><topic>Malaria - therapy</topic><topic>Models, Statistical</topic><topic>Multilevel Analysis - methods</topic><topic>Regression Analysis</topic><topic>Reproducibility of Results</topic><topic>Research Design</topic><topic>Sample Size</topic><topic>Statistics as Topic</topic><topic>Treatment Outcome</topic><topic>Typhoid Fever - therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hussain, Sundas</creatorcontrib><creatorcontrib>Khan, Sajjad Ahmad</creatorcontrib><creatorcontrib>Ali, Amjad</creatorcontrib><creatorcontrib>Ali, Sabz</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hussain, Sundas</au><au>Khan, Sajjad Ahmad</au><au>Ali, Amjad</au><au>Ali, Sabz</au><au>Bursac, Zoran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sufficient Sample Size and Power in Multilevel Ordinal Logistic Regression Models</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>2016</volume><issue>2016</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>For most of the time, biomedical researchers have been dealing with ordinal outcome variable in multilevel models where patients are nested in doctors. We can justifiably apply multilevel cumulative logit model, where the outcome variable represents the mild, severe, and extremely severe intensity of diseases like malaria and typhoid in the form of ordered categories. Based on our simulation conditions, Maximum Likelihood (ML) method is better than Penalized Quasilikelihood (PQL) method in three-category ordinal outcome variable. PQL method, however, performs equally well as ML method where five-category ordinal outcome variable is used. Further, to achieve power more than 0.80, at least 50 groups are required for both ML and PQL methods of estimation. It may be pointed out that, for five-category ordinal response variable model, the power of PQL method is slightly higher than the power of ML method.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>27746826</pmid><doi>10.1155/2016/7329158</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9702-9023</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-670X |
ispartof | Computational and mathematical methods in medicine, 2016-01, Vol.2016 (2016), p.1-8 |
issn | 1748-670X 1748-6718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5056003 |
source | MEDLINE; Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access |
subjects | Algorithms Biomedical Research - methods Biomedical Research - standards Computer Simulation Data Collection Data Interpretation, Statistical Humans Likelihood Functions Malaria - therapy Models, Statistical Multilevel Analysis - methods Regression Analysis Reproducibility of Results Research Design Sample Size Statistics as Topic Treatment Outcome Typhoid Fever - therapy |
title | Sufficient Sample Size and Power in Multilevel Ordinal Logistic Regression Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A12%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sufficient%20Sample%20Size%20and%20Power%20in%20Multilevel%20Ordinal%20Logistic%20Regression%20Models&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Hussain,%20Sundas&rft.date=2016-01-01&rft.volume=2016&rft.issue=2016&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2016/7329158&rft_dat=%3Cproquest_pubme%3E1835441357%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835441357&rft_id=info:pmid/27746826&rfr_iscdi=true |