Sufficient Sample Size and Power in Multilevel Ordinal Logistic Regression Models

For most of the time, biomedical researchers have been dealing with ordinal outcome variable in multilevel models where patients are nested in doctors. We can justifiably apply multilevel cumulative logit model, where the outcome variable represents the mild, severe, and extremely severe intensity o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational and mathematical methods in medicine 2016-01, Vol.2016 (2016), p.1-8
Hauptverfasser: Hussain, Sundas, Khan, Sajjad Ahmad, Ali, Amjad, Ali, Sabz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 2016
container_start_page 1
container_title Computational and mathematical methods in medicine
container_volume 2016
creator Hussain, Sundas
Khan, Sajjad Ahmad
Ali, Amjad
Ali, Sabz
description For most of the time, biomedical researchers have been dealing with ordinal outcome variable in multilevel models where patients are nested in doctors. We can justifiably apply multilevel cumulative logit model, where the outcome variable represents the mild, severe, and extremely severe intensity of diseases like malaria and typhoid in the form of ordered categories. Based on our simulation conditions, Maximum Likelihood (ML) method is better than Penalized Quasilikelihood (PQL) method in three-category ordinal outcome variable. PQL method, however, performs equally well as ML method where five-category ordinal outcome variable is used. Further, to achieve power more than 0.80, at least 50 groups are required for both ML and PQL methods of estimation. It may be pointed out that, for five-category ordinal response variable model, the power of PQL method is slightly higher than the power of ML method.
doi_str_mv 10.1155/2016/7329158
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5056003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835441357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-cded2f0cb95041d9ad2e2ee2d974a6691b4f1c92233c927586c26480637d6fee3</originalsourceid><addsrcrecordid>eNqN0c1rFDEYBvAgFvuhN8-So2DX5s3nzEWQ4kdhS9VV8BayyTvbSHayTWZa9K93ym5XvXlJAvnx5OMh5Dmw1wBKnXEG-swI3oJqHpEjMLKZaQPN4_2afT8kx7X-YEyBUfCEHHJjpG64PiKfF2PXRR-xH-jCrTcJ6SL-Qur6QD_lOyw09vRyTENMeIuJXpUQe5foPK9iHaKnX3BVsNaYJ5YDpvqUHHQuVXy2m0_It_fvvp5_nM2vPlycv53PvJRimPmAgXfML1vFJITWBY4ckYfWSKd1C0vZgW85F2IajWq051o2TAsTdIcoTsibbe5mXK4x-OkFxSW7KXHtyk-bXbT_7vTx2q7yrVVMacbEFPByF1DyzYh1sOtYPabkesxjtdAIJSUIZSZ6uqW-5FoLdvtjgNn7Fux9C3bXwsRf_H21PX749gm82oLr2Ad3F_8zDieDnfujgTFotPgNDlaaNA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835441357</pqid></control><display><type>article</type><title>Sufficient Sample Size and Power in Multilevel Ordinal Logistic Regression Models</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Hussain, Sundas ; Khan, Sajjad Ahmad ; Ali, Amjad ; Ali, Sabz</creator><contributor>Bursac, Zoran</contributor><creatorcontrib>Hussain, Sundas ; Khan, Sajjad Ahmad ; Ali, Amjad ; Ali, Sabz ; Bursac, Zoran</creatorcontrib><description>For most of the time, biomedical researchers have been dealing with ordinal outcome variable in multilevel models where patients are nested in doctors. We can justifiably apply multilevel cumulative logit model, where the outcome variable represents the mild, severe, and extremely severe intensity of diseases like malaria and typhoid in the form of ordered categories. Based on our simulation conditions, Maximum Likelihood (ML) method is better than Penalized Quasilikelihood (PQL) method in three-category ordinal outcome variable. PQL method, however, performs equally well as ML method where five-category ordinal outcome variable is used. Further, to achieve power more than 0.80, at least 50 groups are required for both ML and PQL methods of estimation. It may be pointed out that, for five-category ordinal response variable model, the power of PQL method is slightly higher than the power of ML method.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2016/7329158</identifier><identifier>PMID: 27746826</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Biomedical Research - methods ; Biomedical Research - standards ; Computer Simulation ; Data Collection ; Data Interpretation, Statistical ; Humans ; Likelihood Functions ; Malaria - therapy ; Models, Statistical ; Multilevel Analysis - methods ; Regression Analysis ; Reproducibility of Results ; Research Design ; Sample Size ; Statistics as Topic ; Treatment Outcome ; Typhoid Fever - therapy</subject><ispartof>Computational and mathematical methods in medicine, 2016-01, Vol.2016 (2016), p.1-8</ispartof><rights>Copyright © 2016 Sabz Ali et al.</rights><rights>Copyright © 2016 Sabz Ali et al. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-cded2f0cb95041d9ad2e2ee2d974a6691b4f1c92233c927586c26480637d6fee3</citedby><cites>FETCH-LOGICAL-c443t-cded2f0cb95041d9ad2e2ee2d974a6691b4f1c92233c927586c26480637d6fee3</cites><orcidid>0000-0002-9702-9023</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5056003/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5056003/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27746826$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bursac, Zoran</contributor><creatorcontrib>Hussain, Sundas</creatorcontrib><creatorcontrib>Khan, Sajjad Ahmad</creatorcontrib><creatorcontrib>Ali, Amjad</creatorcontrib><creatorcontrib>Ali, Sabz</creatorcontrib><title>Sufficient Sample Size and Power in Multilevel Ordinal Logistic Regression Models</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>For most of the time, biomedical researchers have been dealing with ordinal outcome variable in multilevel models where patients are nested in doctors. We can justifiably apply multilevel cumulative logit model, where the outcome variable represents the mild, severe, and extremely severe intensity of diseases like malaria and typhoid in the form of ordered categories. Based on our simulation conditions, Maximum Likelihood (ML) method is better than Penalized Quasilikelihood (PQL) method in three-category ordinal outcome variable. PQL method, however, performs equally well as ML method where five-category ordinal outcome variable is used. Further, to achieve power more than 0.80, at least 50 groups are required for both ML and PQL methods of estimation. It may be pointed out that, for five-category ordinal response variable model, the power of PQL method is slightly higher than the power of ML method.</description><subject>Algorithms</subject><subject>Biomedical Research - methods</subject><subject>Biomedical Research - standards</subject><subject>Computer Simulation</subject><subject>Data Collection</subject><subject>Data Interpretation, Statistical</subject><subject>Humans</subject><subject>Likelihood Functions</subject><subject>Malaria - therapy</subject><subject>Models, Statistical</subject><subject>Multilevel Analysis - methods</subject><subject>Regression Analysis</subject><subject>Reproducibility of Results</subject><subject>Research Design</subject><subject>Sample Size</subject><subject>Statistics as Topic</subject><subject>Treatment Outcome</subject><subject>Typhoid Fever - therapy</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqN0c1rFDEYBvAgFvuhN8-So2DX5s3nzEWQ4kdhS9VV8BayyTvbSHayTWZa9K93ym5XvXlJAvnx5OMh5Dmw1wBKnXEG-swI3oJqHpEjMLKZaQPN4_2afT8kx7X-YEyBUfCEHHJjpG64PiKfF2PXRR-xH-jCrTcJ6SL-Qur6QD_lOyw09vRyTENMeIuJXpUQe5foPK9iHaKnX3BVsNaYJ5YDpvqUHHQuVXy2m0_It_fvvp5_nM2vPlycv53PvJRimPmAgXfML1vFJITWBY4ckYfWSKd1C0vZgW85F2IajWq051o2TAsTdIcoTsibbe5mXK4x-OkFxSW7KXHtyk-bXbT_7vTx2q7yrVVMacbEFPByF1DyzYh1sOtYPabkesxjtdAIJSUIZSZ6uqW-5FoLdvtjgNn7Fux9C3bXwsRf_H21PX749gm82oLr2Ad3F_8zDieDnfujgTFotPgNDlaaNA</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Hussain, Sundas</creator><creator>Khan, Sajjad Ahmad</creator><creator>Ali, Amjad</creator><creator>Ali, Sabz</creator><general>Hindawi Publishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9702-9023</orcidid></search><sort><creationdate>20160101</creationdate><title>Sufficient Sample Size and Power in Multilevel Ordinal Logistic Regression Models</title><author>Hussain, Sundas ; Khan, Sajjad Ahmad ; Ali, Amjad ; Ali, Sabz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-cded2f0cb95041d9ad2e2ee2d974a6691b4f1c92233c927586c26480637d6fee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Biomedical Research - methods</topic><topic>Biomedical Research - standards</topic><topic>Computer Simulation</topic><topic>Data Collection</topic><topic>Data Interpretation, Statistical</topic><topic>Humans</topic><topic>Likelihood Functions</topic><topic>Malaria - therapy</topic><topic>Models, Statistical</topic><topic>Multilevel Analysis - methods</topic><topic>Regression Analysis</topic><topic>Reproducibility of Results</topic><topic>Research Design</topic><topic>Sample Size</topic><topic>Statistics as Topic</topic><topic>Treatment Outcome</topic><topic>Typhoid Fever - therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hussain, Sundas</creatorcontrib><creatorcontrib>Khan, Sajjad Ahmad</creatorcontrib><creatorcontrib>Ali, Amjad</creatorcontrib><creatorcontrib>Ali, Sabz</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hussain, Sundas</au><au>Khan, Sajjad Ahmad</au><au>Ali, Amjad</au><au>Ali, Sabz</au><au>Bursac, Zoran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sufficient Sample Size and Power in Multilevel Ordinal Logistic Regression Models</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>2016</volume><issue>2016</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>For most of the time, biomedical researchers have been dealing with ordinal outcome variable in multilevel models where patients are nested in doctors. We can justifiably apply multilevel cumulative logit model, where the outcome variable represents the mild, severe, and extremely severe intensity of diseases like malaria and typhoid in the form of ordered categories. Based on our simulation conditions, Maximum Likelihood (ML) method is better than Penalized Quasilikelihood (PQL) method in three-category ordinal outcome variable. PQL method, however, performs equally well as ML method where five-category ordinal outcome variable is used. Further, to achieve power more than 0.80, at least 50 groups are required for both ML and PQL methods of estimation. It may be pointed out that, for five-category ordinal response variable model, the power of PQL method is slightly higher than the power of ML method.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>27746826</pmid><doi>10.1155/2016/7329158</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9702-9023</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-670X
ispartof Computational and mathematical methods in medicine, 2016-01, Vol.2016 (2016), p.1-8
issn 1748-670X
1748-6718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5056003
source MEDLINE; Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access
subjects Algorithms
Biomedical Research - methods
Biomedical Research - standards
Computer Simulation
Data Collection
Data Interpretation, Statistical
Humans
Likelihood Functions
Malaria - therapy
Models, Statistical
Multilevel Analysis - methods
Regression Analysis
Reproducibility of Results
Research Design
Sample Size
Statistics as Topic
Treatment Outcome
Typhoid Fever - therapy
title Sufficient Sample Size and Power in Multilevel Ordinal Logistic Regression Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A12%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sufficient%20Sample%20Size%20and%20Power%20in%20Multilevel%20Ordinal%20Logistic%20Regression%20Models&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Hussain,%20Sundas&rft.date=2016-01-01&rft.volume=2016&rft.issue=2016&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2016/7329158&rft_dat=%3Cproquest_pubme%3E1835441357%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835441357&rft_id=info:pmid/27746826&rfr_iscdi=true