End Sequence Analysis Toolkit (ESAT) expands the extractable information from single-cell RNA-seq data

RNA-seq protocols that focus on transcript termini are well suited for applications in which template quantity is limiting. Here we show that, when applied to end-sequencing data, analytical methods designed for global RNA-seq produce computational artifacts. To remedy this, we created the End Seque...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome research 2016-10, Vol.26 (10), p.1397-1410
Hauptverfasser: Derr, Alan, Yang, Chaoxing, Zilionis, Rapolas, Sergushichev, Alexey, Blodgett, David M, Redick, Sambra, Bortell, Rita, Luban, Jeremy, Harlan, David M, Kadener, Sebastian, Greiner, Dale L, Klein, Allon, Artyomov, Maxim N, Garber, Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1410
container_issue 10
container_start_page 1397
container_title Genome research
container_volume 26
creator Derr, Alan
Yang, Chaoxing
Zilionis, Rapolas
Sergushichev, Alexey
Blodgett, David M
Redick, Sambra
Bortell, Rita
Luban, Jeremy
Harlan, David M
Kadener, Sebastian
Greiner, Dale L
Klein, Allon
Artyomov, Maxim N
Garber, Manuel
description RNA-seq protocols that focus on transcript termini are well suited for applications in which template quantity is limiting. Here we show that, when applied to end-sequencing data, analytical methods designed for global RNA-seq produce computational artifacts. To remedy this, we created the End Sequence Analysis Toolkit (ESAT). As a test, we first compared end-sequencing and bulk RNA-seq using RNA from dendritic cells stimulated with lipopolysaccharide (LPS). As predicted by the telescripting model for transcriptional bursts, ESAT detected an LPS-stimulated shift to shorter 3'-isoforms that was not evident by conventional computational methods. Then, droplet-based microfluidics was used to generate 1000 cDNA libraries, each from an individual pancreatic islet cell. ESAT identified nine distinct cell types, three distinct β-cell types, and a complex interplay between hormone secretion and vascularization. ESAT, then, offers a much-needed and generally applicable computational pipeline for either bulk or single-cell RNA end-sequencing.
doi_str_mv 10.1101/gr.207902.116
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5052061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1837307196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-c985bc579da4d8fc1dff0f7a4c6c3fefbced9b43d129789e5085eaf9e5aeeae63</originalsourceid><addsrcrecordid>eNqNUU1v1DAQtRCIlsKRK_KxHFLGSRzbF6RVtXxIFUh0OVuOPd4aEntrZyv67_FqSwU3TvNG8-bpzTxCXjO4YAzYu22-aEEoaGs7PCGnjPeq4f2gnlYMUjYKODshL0r5AQBdL-VzctKKXkBdPyV-HR29xts9Rot0Fc10X0Khm5Smn2Gh5-vr1eYtxV87E12hyw1WvGRjFzNOSEP0Kc9mCSlSn9NMS4jbCRuL00S_fVk1BW-pM4t5SZ55MxV89VDPyPcP683lp-bq68fPl6urxvZyWBqrJB8tF8qZ3klvmfMevDC9HWzn0Y8WnRr7zrFWCamQg-RofAUG0eDQnZH3R93dfpzRWYzV7KR3Ocwm3-tkgv53EsON3qY7zYG3MLAqcP4gkFN9Sln0HMrhHBMx7YtmshMdCKaG_6C2g-gkMKjU5ki1OZWS0T86YqAPMept1scYa3uQfvP3GY_sP7l1vwGM6Zqy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826738010</pqid></control><display><type>article</type><title>End Sequence Analysis Toolkit (ESAT) expands the extractable information from single-cell RNA-seq data</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Derr, Alan ; Yang, Chaoxing ; Zilionis, Rapolas ; Sergushichev, Alexey ; Blodgett, David M ; Redick, Sambra ; Bortell, Rita ; Luban, Jeremy ; Harlan, David M ; Kadener, Sebastian ; Greiner, Dale L ; Klein, Allon ; Artyomov, Maxim N ; Garber, Manuel</creator><creatorcontrib>Derr, Alan ; Yang, Chaoxing ; Zilionis, Rapolas ; Sergushichev, Alexey ; Blodgett, David M ; Redick, Sambra ; Bortell, Rita ; Luban, Jeremy ; Harlan, David M ; Kadener, Sebastian ; Greiner, Dale L ; Klein, Allon ; Artyomov, Maxim N ; Garber, Manuel</creatorcontrib><description>RNA-seq protocols that focus on transcript termini are well suited for applications in which template quantity is limiting. Here we show that, when applied to end-sequencing data, analytical methods designed for global RNA-seq produce computational artifacts. To remedy this, we created the End Sequence Analysis Toolkit (ESAT). As a test, we first compared end-sequencing and bulk RNA-seq using RNA from dendritic cells stimulated with lipopolysaccharide (LPS). As predicted by the telescripting model for transcriptional bursts, ESAT detected an LPS-stimulated shift to shorter 3'-isoforms that was not evident by conventional computational methods. Then, droplet-based microfluidics was used to generate 1000 cDNA libraries, each from an individual pancreatic islet cell. ESAT identified nine distinct cell types, three distinct β-cell types, and a complex interplay between hormone secretion and vascularization. ESAT, then, offers a much-needed and generally applicable computational pipeline for either bulk or single-cell RNA end-sequencing.</description><identifier>ISSN: 1088-9051</identifier><identifier>EISSN: 1549-5469</identifier><identifier>DOI: 10.1101/gr.207902.116</identifier><identifier>PMID: 27470110</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Animals ; Cells, Cultured ; Dendritic Cells - cytology ; Dendritic Cells - metabolism ; Gene Library ; Islets of Langerhans - cytology ; Islets of Langerhans - metabolism ; Method ; Microfluidics - methods ; Rats ; Sequence Analysis, RNA - methods ; Sequence Analysis, RNA - standards ; Single-Cell Analysis - methods ; Single-Cell Analysis - standards ; Transcriptome</subject><ispartof>Genome research, 2016-10, Vol.26 (10), p.1397-1410</ispartof><rights>2016 Derr et al.; Published by Cold Spring Harbor Laboratory Press.</rights><rights>2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-c985bc579da4d8fc1dff0f7a4c6c3fefbced9b43d129789e5085eaf9e5aeeae63</citedby><cites>FETCH-LOGICAL-c486t-c985bc579da4d8fc1dff0f7a4c6c3fefbced9b43d129789e5085eaf9e5aeeae63</cites><orcidid>0000-0001-8732-1293</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5052061/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5052061/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27470110$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Derr, Alan</creatorcontrib><creatorcontrib>Yang, Chaoxing</creatorcontrib><creatorcontrib>Zilionis, Rapolas</creatorcontrib><creatorcontrib>Sergushichev, Alexey</creatorcontrib><creatorcontrib>Blodgett, David M</creatorcontrib><creatorcontrib>Redick, Sambra</creatorcontrib><creatorcontrib>Bortell, Rita</creatorcontrib><creatorcontrib>Luban, Jeremy</creatorcontrib><creatorcontrib>Harlan, David M</creatorcontrib><creatorcontrib>Kadener, Sebastian</creatorcontrib><creatorcontrib>Greiner, Dale L</creatorcontrib><creatorcontrib>Klein, Allon</creatorcontrib><creatorcontrib>Artyomov, Maxim N</creatorcontrib><creatorcontrib>Garber, Manuel</creatorcontrib><title>End Sequence Analysis Toolkit (ESAT) expands the extractable information from single-cell RNA-seq data</title><title>Genome research</title><addtitle>Genome Res</addtitle><description>RNA-seq protocols that focus on transcript termini are well suited for applications in which template quantity is limiting. Here we show that, when applied to end-sequencing data, analytical methods designed for global RNA-seq produce computational artifacts. To remedy this, we created the End Sequence Analysis Toolkit (ESAT). As a test, we first compared end-sequencing and bulk RNA-seq using RNA from dendritic cells stimulated with lipopolysaccharide (LPS). As predicted by the telescripting model for transcriptional bursts, ESAT detected an LPS-stimulated shift to shorter 3'-isoforms that was not evident by conventional computational methods. Then, droplet-based microfluidics was used to generate 1000 cDNA libraries, each from an individual pancreatic islet cell. ESAT identified nine distinct cell types, three distinct β-cell types, and a complex interplay between hormone secretion and vascularization. ESAT, then, offers a much-needed and generally applicable computational pipeline for either bulk or single-cell RNA end-sequencing.</description><subject>Animals</subject><subject>Cells, Cultured</subject><subject>Dendritic Cells - cytology</subject><subject>Dendritic Cells - metabolism</subject><subject>Gene Library</subject><subject>Islets of Langerhans - cytology</subject><subject>Islets of Langerhans - metabolism</subject><subject>Method</subject><subject>Microfluidics - methods</subject><subject>Rats</subject><subject>Sequence Analysis, RNA - methods</subject><subject>Sequence Analysis, RNA - standards</subject><subject>Single-Cell Analysis - methods</subject><subject>Single-Cell Analysis - standards</subject><subject>Transcriptome</subject><issn>1088-9051</issn><issn>1549-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUU1v1DAQtRCIlsKRK_KxHFLGSRzbF6RVtXxIFUh0OVuOPd4aEntrZyv67_FqSwU3TvNG8-bpzTxCXjO4YAzYu22-aEEoaGs7PCGnjPeq4f2gnlYMUjYKODshL0r5AQBdL-VzctKKXkBdPyV-HR29xts9Rot0Fc10X0Khm5Smn2Gh5-vr1eYtxV87E12hyw1WvGRjFzNOSEP0Kc9mCSlSn9NMS4jbCRuL00S_fVk1BW-pM4t5SZ55MxV89VDPyPcP683lp-bq68fPl6urxvZyWBqrJB8tF8qZ3klvmfMevDC9HWzn0Y8WnRr7zrFWCamQg-RofAUG0eDQnZH3R93dfpzRWYzV7KR3Ocwm3-tkgv53EsON3qY7zYG3MLAqcP4gkFN9Sln0HMrhHBMx7YtmshMdCKaG_6C2g-gkMKjU5ki1OZWS0T86YqAPMept1scYa3uQfvP3GY_sP7l1vwGM6Zqy</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Derr, Alan</creator><creator>Yang, Chaoxing</creator><creator>Zilionis, Rapolas</creator><creator>Sergushichev, Alexey</creator><creator>Blodgett, David M</creator><creator>Redick, Sambra</creator><creator>Bortell, Rita</creator><creator>Luban, Jeremy</creator><creator>Harlan, David M</creator><creator>Kadener, Sebastian</creator><creator>Greiner, Dale L</creator><creator>Klein, Allon</creator><creator>Artyomov, Maxim N</creator><creator>Garber, Manuel</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8732-1293</orcidid></search><sort><creationdate>20161001</creationdate><title>End Sequence Analysis Toolkit (ESAT) expands the extractable information from single-cell RNA-seq data</title><author>Derr, Alan ; Yang, Chaoxing ; Zilionis, Rapolas ; Sergushichev, Alexey ; Blodgett, David M ; Redick, Sambra ; Bortell, Rita ; Luban, Jeremy ; Harlan, David M ; Kadener, Sebastian ; Greiner, Dale L ; Klein, Allon ; Artyomov, Maxim N ; Garber, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-c985bc579da4d8fc1dff0f7a4c6c3fefbced9b43d129789e5085eaf9e5aeeae63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Cells, Cultured</topic><topic>Dendritic Cells - cytology</topic><topic>Dendritic Cells - metabolism</topic><topic>Gene Library</topic><topic>Islets of Langerhans - cytology</topic><topic>Islets of Langerhans - metabolism</topic><topic>Method</topic><topic>Microfluidics - methods</topic><topic>Rats</topic><topic>Sequence Analysis, RNA - methods</topic><topic>Sequence Analysis, RNA - standards</topic><topic>Single-Cell Analysis - methods</topic><topic>Single-Cell Analysis - standards</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Derr, Alan</creatorcontrib><creatorcontrib>Yang, Chaoxing</creatorcontrib><creatorcontrib>Zilionis, Rapolas</creatorcontrib><creatorcontrib>Sergushichev, Alexey</creatorcontrib><creatorcontrib>Blodgett, David M</creatorcontrib><creatorcontrib>Redick, Sambra</creatorcontrib><creatorcontrib>Bortell, Rita</creatorcontrib><creatorcontrib>Luban, Jeremy</creatorcontrib><creatorcontrib>Harlan, David M</creatorcontrib><creatorcontrib>Kadener, Sebastian</creatorcontrib><creatorcontrib>Greiner, Dale L</creatorcontrib><creatorcontrib>Klein, Allon</creatorcontrib><creatorcontrib>Artyomov, Maxim N</creatorcontrib><creatorcontrib>Garber, Manuel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Derr, Alan</au><au>Yang, Chaoxing</au><au>Zilionis, Rapolas</au><au>Sergushichev, Alexey</au><au>Blodgett, David M</au><au>Redick, Sambra</au><au>Bortell, Rita</au><au>Luban, Jeremy</au><au>Harlan, David M</au><au>Kadener, Sebastian</au><au>Greiner, Dale L</au><au>Klein, Allon</au><au>Artyomov, Maxim N</au><au>Garber, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>End Sequence Analysis Toolkit (ESAT) expands the extractable information from single-cell RNA-seq data</atitle><jtitle>Genome research</jtitle><addtitle>Genome Res</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>26</volume><issue>10</issue><spage>1397</spage><epage>1410</epage><pages>1397-1410</pages><issn>1088-9051</issn><eissn>1549-5469</eissn><abstract>RNA-seq protocols that focus on transcript termini are well suited for applications in which template quantity is limiting. Here we show that, when applied to end-sequencing data, analytical methods designed for global RNA-seq produce computational artifacts. To remedy this, we created the End Sequence Analysis Toolkit (ESAT). As a test, we first compared end-sequencing and bulk RNA-seq using RNA from dendritic cells stimulated with lipopolysaccharide (LPS). As predicted by the telescripting model for transcriptional bursts, ESAT detected an LPS-stimulated shift to shorter 3'-isoforms that was not evident by conventional computational methods. Then, droplet-based microfluidics was used to generate 1000 cDNA libraries, each from an individual pancreatic islet cell. ESAT identified nine distinct cell types, three distinct β-cell types, and a complex interplay between hormone secretion and vascularization. ESAT, then, offers a much-needed and generally applicable computational pipeline for either bulk or single-cell RNA end-sequencing.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>27470110</pmid><doi>10.1101/gr.207902.116</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8732-1293</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1088-9051
ispartof Genome research, 2016-10, Vol.26 (10), p.1397-1410
issn 1088-9051
1549-5469
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5052061
source MEDLINE; PubMed Central; Alma/SFX Local Collection
subjects Animals
Cells, Cultured
Dendritic Cells - cytology
Dendritic Cells - metabolism
Gene Library
Islets of Langerhans - cytology
Islets of Langerhans - metabolism
Method
Microfluidics - methods
Rats
Sequence Analysis, RNA - methods
Sequence Analysis, RNA - standards
Single-Cell Analysis - methods
Single-Cell Analysis - standards
Transcriptome
title End Sequence Analysis Toolkit (ESAT) expands the extractable information from single-cell RNA-seq data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T10%3A12%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=End%20Sequence%20Analysis%20Toolkit%20(ESAT)%20expands%20the%20extractable%20information%20from%20single-cell%20RNA-seq%20data&rft.jtitle=Genome%20research&rft.au=Derr,%20Alan&rft.date=2016-10-01&rft.volume=26&rft.issue=10&rft.spage=1397&rft.epage=1410&rft.pages=1397-1410&rft.issn=1088-9051&rft.eissn=1549-5469&rft_id=info:doi/10.1101/gr.207902.116&rft_dat=%3Cproquest_pubme%3E1837307196%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826738010&rft_id=info:pmid/27470110&rfr_iscdi=true