Humanized H19/Igf2 locus reveals diverged imprinting mechanism between mouse and human and reflects Silver–Russell syndrome phenotypes

Genomic imprinting affects a subset of genes in mammals, such that they are expressed in a monoallelic, parent-of-origin–specific manner. These genes are regulated by imprinting control regions (ICRs), cis-regulatory elements that exhibit allele-specific differential DNA methylation. Although genomi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2016-09, Vol.113 (39), p.10938-10943
Hauptverfasser: Hur, Stella K., Freschi, Andrea, Ideraabdullah, Folami, Thorvaldsen, Joanne L., Luense, Lacey J., Weller, Angela H., Berger, Shelley L., Cerrato, Flavia, Riccio, Andrea, Bartolomei, Marisa S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10943
container_issue 39
container_start_page 10938
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 113
creator Hur, Stella K.
Freschi, Andrea
Ideraabdullah, Folami
Thorvaldsen, Joanne L.
Luense, Lacey J.
Weller, Angela H.
Berger, Shelley L.
Cerrato, Flavia
Riccio, Andrea
Bartolomei, Marisa S.
description Genomic imprinting affects a subset of genes in mammals, such that they are expressed in a monoallelic, parent-of-origin–specific manner. These genes are regulated by imprinting control regions (ICRs), cis-regulatory elements that exhibit allele-specific differential DNA methylation. Although genomic imprinting is conserved in mammals, ICRs are genetically divergent across species. This raises the fundamental question of whether the ICR plays a species-specific role in regulating imprinting at a given locus. We addressed this question at the H19/insulin-like growth factor 2 (Igf2) imprinted locus, the misregulation of which is associated with the human imprinting disorders Beckwith–Wiedemann syndrome (BWS) and Silver–Russell syndrome (SRS). We generated a knock-in mouse in which the endogenous H19/Igf2 ICR (mIC1) is replaced by the orthologous human ICR (hIC1) sequence, designated H19hIC1 . We show that hIC1 can functionally replace mIC1 on the maternal allele. In contrast, paternally transmitted hIC1 leads to growth restriction, abnormal hIC1 methylation, and loss of H19 and Igf2 imprinted expression. Imprint establishment at hIC1 is impaired in the male germ line, which is associated with an abnormal composition of histone posttranslational modifications compared with mIC1. Overall, this study reveals evolutionarily divergent paternal imprinting at IC1 between mice and humans. The conserved maternal imprinting mechanism and function at IC1 demonstrates the possibility of modeling maternal transmission of hIC1 mutations associated with BWS in mice. In addition, we propose that further analyses in the paternal knock-in H19 +/hIC1 mice will elucidate the molecular mechanisms that may underlie SRS.
doi_str_mv 10.1073/pnas.1603066113
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5047210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26471860</jstor_id><sourcerecordid>26471860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-187d908ce9c7fdbba04ce602146e7e6be7cf68f36c786e1c2fdc45b60c4185773</originalsourceid><addsrcrecordid>eNpVkUtP3DAUhS1EBQPtuqtWlliHuU4c29kgIUQZJKRKfaytxLmZySixUzsZNF112T3_kF9ST4cCXdnSPee7j0PIewbnDGQ2H2wZzpmADIRgLDsgMwYFSwQv4JDMAFKZKJ7yY3ISwhoAilzBETlOpUgZF2pGfi-mvrTtT6zpghXz22WT0s6ZKVCPGyy7QOt2g34Z620_-NaOrV3SHs0qukJPKxzvES3t3RSQlramqx3w789j06EZA_3adpHx-OvhyxQCdh0NW1t71yMdVmjduB0wvCVvmtgO3z29p-T7p-tvV4vk7vPN7dXlXWI4gzFhStYFKIOFkU1dVSVwgwJ226BEUaE0jVBNJoxUAplJm9rwvBIQ7SqXMjslF3vuMFU91gbt6MtOx9X60m-1K1v9f8W2K710G50DlymDCDh7Anj3Y8Iw6rWbvI0za6ZSwZko8jyq5nuV8S6EeInnDgz0Ljq9i06_RBcdH18P9qz_l1UUfNgL1mF0_qUuuGQqcv4AEsmj0w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826416955</pqid></control><display><type>article</type><title>Humanized H19/Igf2 locus reveals diverged imprinting mechanism between mouse and human and reflects Silver–Russell syndrome phenotypes</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hur, Stella K. ; Freschi, Andrea ; Ideraabdullah, Folami ; Thorvaldsen, Joanne L. ; Luense, Lacey J. ; Weller, Angela H. ; Berger, Shelley L. ; Cerrato, Flavia ; Riccio, Andrea ; Bartolomei, Marisa S.</creator><creatorcontrib>Hur, Stella K. ; Freschi, Andrea ; Ideraabdullah, Folami ; Thorvaldsen, Joanne L. ; Luense, Lacey J. ; Weller, Angela H. ; Berger, Shelley L. ; Cerrato, Flavia ; Riccio, Andrea ; Bartolomei, Marisa S.</creatorcontrib><description>Genomic imprinting affects a subset of genes in mammals, such that they are expressed in a monoallelic, parent-of-origin–specific manner. These genes are regulated by imprinting control regions (ICRs), cis-regulatory elements that exhibit allele-specific differential DNA methylation. Although genomic imprinting is conserved in mammals, ICRs are genetically divergent across species. This raises the fundamental question of whether the ICR plays a species-specific role in regulating imprinting at a given locus. We addressed this question at the H19/insulin-like growth factor 2 (Igf2) imprinted locus, the misregulation of which is associated with the human imprinting disorders Beckwith–Wiedemann syndrome (BWS) and Silver–Russell syndrome (SRS). We generated a knock-in mouse in which the endogenous H19/Igf2 ICR (mIC1) is replaced by the orthologous human ICR (hIC1) sequence, designated H19hIC1 . We show that hIC1 can functionally replace mIC1 on the maternal allele. In contrast, paternally transmitted hIC1 leads to growth restriction, abnormal hIC1 methylation, and loss of H19 and Igf2 imprinted expression. Imprint establishment at hIC1 is impaired in the male germ line, which is associated with an abnormal composition of histone posttranslational modifications compared with mIC1. Overall, this study reveals evolutionarily divergent paternal imprinting at IC1 between mice and humans. The conserved maternal imprinting mechanism and function at IC1 demonstrates the possibility of modeling maternal transmission of hIC1 mutations associated with BWS in mice. In addition, we propose that further analyses in the paternal knock-in H19 +/hIC1 mice will elucidate the molecular mechanisms that may underlie SRS.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1603066113</identifier><identifier>PMID: 27621468</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Alleles ; Animals ; Biological Sciences ; DNA methylation ; DNA Methylation - genetics ; Embryo, Mammalian - metabolism ; Female ; Gene expression ; Gene loci ; Gene Targeting ; Genetic Loci ; Genomic Imprinting ; Genomics ; Genotype &amp; phenotype ; Growth disorders ; Histones - metabolism ; Humans ; Insulin-Like Growth Factor II - genetics ; Lysine - metabolism ; Male ; Mice, Inbred C57BL ; Phenotype ; RNA, Long Noncoding - genetics ; Silver-Russell Syndrome - genetics ; Silver-Russell Syndrome - pathology ; Spermatogenesis - genetics ; Spermatozoa - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-09, Vol.113 (39), p.10938-10943</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Sep 27, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-187d908ce9c7fdbba04ce602146e7e6be7cf68f36c786e1c2fdc45b60c4185773</citedby><cites>FETCH-LOGICAL-c410t-187d908ce9c7fdbba04ce602146e7e6be7cf68f36c786e1c2fdc45b60c4185773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26471860$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26471860$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27922,27923,53789,53791,58015,58248</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27621468$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hur, Stella K.</creatorcontrib><creatorcontrib>Freschi, Andrea</creatorcontrib><creatorcontrib>Ideraabdullah, Folami</creatorcontrib><creatorcontrib>Thorvaldsen, Joanne L.</creatorcontrib><creatorcontrib>Luense, Lacey J.</creatorcontrib><creatorcontrib>Weller, Angela H.</creatorcontrib><creatorcontrib>Berger, Shelley L.</creatorcontrib><creatorcontrib>Cerrato, Flavia</creatorcontrib><creatorcontrib>Riccio, Andrea</creatorcontrib><creatorcontrib>Bartolomei, Marisa S.</creatorcontrib><title>Humanized H19/Igf2 locus reveals diverged imprinting mechanism between mouse and human and reflects Silver–Russell syndrome phenotypes</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Genomic imprinting affects a subset of genes in mammals, such that they are expressed in a monoallelic, parent-of-origin–specific manner. These genes are regulated by imprinting control regions (ICRs), cis-regulatory elements that exhibit allele-specific differential DNA methylation. Although genomic imprinting is conserved in mammals, ICRs are genetically divergent across species. This raises the fundamental question of whether the ICR plays a species-specific role in regulating imprinting at a given locus. We addressed this question at the H19/insulin-like growth factor 2 (Igf2) imprinted locus, the misregulation of which is associated with the human imprinting disorders Beckwith–Wiedemann syndrome (BWS) and Silver–Russell syndrome (SRS). We generated a knock-in mouse in which the endogenous H19/Igf2 ICR (mIC1) is replaced by the orthologous human ICR (hIC1) sequence, designated H19hIC1 . We show that hIC1 can functionally replace mIC1 on the maternal allele. In contrast, paternally transmitted hIC1 leads to growth restriction, abnormal hIC1 methylation, and loss of H19 and Igf2 imprinted expression. Imprint establishment at hIC1 is impaired in the male germ line, which is associated with an abnormal composition of histone posttranslational modifications compared with mIC1. Overall, this study reveals evolutionarily divergent paternal imprinting at IC1 between mice and humans. The conserved maternal imprinting mechanism and function at IC1 demonstrates the possibility of modeling maternal transmission of hIC1 mutations associated with BWS in mice. In addition, we propose that further analyses in the paternal knock-in H19 +/hIC1 mice will elucidate the molecular mechanisms that may underlie SRS.</description><subject>Alleles</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>DNA methylation</subject><subject>DNA Methylation - genetics</subject><subject>Embryo, Mammalian - metabolism</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene loci</subject><subject>Gene Targeting</subject><subject>Genetic Loci</subject><subject>Genomic Imprinting</subject><subject>Genomics</subject><subject>Genotype &amp; phenotype</subject><subject>Growth disorders</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Insulin-Like Growth Factor II - genetics</subject><subject>Lysine - metabolism</subject><subject>Male</subject><subject>Mice, Inbred C57BL</subject><subject>Phenotype</subject><subject>RNA, Long Noncoding - genetics</subject><subject>Silver-Russell Syndrome - genetics</subject><subject>Silver-Russell Syndrome - pathology</subject><subject>Spermatogenesis - genetics</subject><subject>Spermatozoa - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUtP3DAUhS1EBQPtuqtWlliHuU4c29kgIUQZJKRKfaytxLmZySixUzsZNF112T3_kF9ST4cCXdnSPee7j0PIewbnDGQ2H2wZzpmADIRgLDsgMwYFSwQv4JDMAFKZKJ7yY3ISwhoAilzBETlOpUgZF2pGfi-mvrTtT6zpghXz22WT0s6ZKVCPGyy7QOt2g34Z620_-NaOrV3SHs0qukJPKxzvES3t3RSQlramqx3w789j06EZA_3adpHx-OvhyxQCdh0NW1t71yMdVmjduB0wvCVvmtgO3z29p-T7p-tvV4vk7vPN7dXlXWI4gzFhStYFKIOFkU1dVSVwgwJ226BEUaE0jVBNJoxUAplJm9rwvBIQ7SqXMjslF3vuMFU91gbt6MtOx9X60m-1K1v9f8W2K710G50DlymDCDh7Anj3Y8Iw6rWbvI0za6ZSwZko8jyq5nuV8S6EeInnDgz0Ljq9i06_RBcdH18P9qz_l1UUfNgL1mF0_qUuuGQqcv4AEsmj0w</recordid><startdate>20160927</startdate><enddate>20160927</enddate><creator>Hur, Stella K.</creator><creator>Freschi, Andrea</creator><creator>Ideraabdullah, Folami</creator><creator>Thorvaldsen, Joanne L.</creator><creator>Luense, Lacey J.</creator><creator>Weller, Angela H.</creator><creator>Berger, Shelley L.</creator><creator>Cerrato, Flavia</creator><creator>Riccio, Andrea</creator><creator>Bartolomei, Marisa S.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20160927</creationdate><title>Humanized H19/Igf2 locus reveals diverged imprinting mechanism between mouse and human and reflects Silver–Russell syndrome phenotypes</title><author>Hur, Stella K. ; Freschi, Andrea ; Ideraabdullah, Folami ; Thorvaldsen, Joanne L. ; Luense, Lacey J. ; Weller, Angela H. ; Berger, Shelley L. ; Cerrato, Flavia ; Riccio, Andrea ; Bartolomei, Marisa S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-187d908ce9c7fdbba04ce602146e7e6be7cf68f36c786e1c2fdc45b60c4185773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alleles</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>DNA methylation</topic><topic>DNA Methylation - genetics</topic><topic>Embryo, Mammalian - metabolism</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene loci</topic><topic>Gene Targeting</topic><topic>Genetic Loci</topic><topic>Genomic Imprinting</topic><topic>Genomics</topic><topic>Genotype &amp; phenotype</topic><topic>Growth disorders</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Insulin-Like Growth Factor II - genetics</topic><topic>Lysine - metabolism</topic><topic>Male</topic><topic>Mice, Inbred C57BL</topic><topic>Phenotype</topic><topic>RNA, Long Noncoding - genetics</topic><topic>Silver-Russell Syndrome - genetics</topic><topic>Silver-Russell Syndrome - pathology</topic><topic>Spermatogenesis - genetics</topic><topic>Spermatozoa - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hur, Stella K.</creatorcontrib><creatorcontrib>Freschi, Andrea</creatorcontrib><creatorcontrib>Ideraabdullah, Folami</creatorcontrib><creatorcontrib>Thorvaldsen, Joanne L.</creatorcontrib><creatorcontrib>Luense, Lacey J.</creatorcontrib><creatorcontrib>Weller, Angela H.</creatorcontrib><creatorcontrib>Berger, Shelley L.</creatorcontrib><creatorcontrib>Cerrato, Flavia</creatorcontrib><creatorcontrib>Riccio, Andrea</creatorcontrib><creatorcontrib>Bartolomei, Marisa S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hur, Stella K.</au><au>Freschi, Andrea</au><au>Ideraabdullah, Folami</au><au>Thorvaldsen, Joanne L.</au><au>Luense, Lacey J.</au><au>Weller, Angela H.</au><au>Berger, Shelley L.</au><au>Cerrato, Flavia</au><au>Riccio, Andrea</au><au>Bartolomei, Marisa S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Humanized H19/Igf2 locus reveals diverged imprinting mechanism between mouse and human and reflects Silver–Russell syndrome phenotypes</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-09-27</date><risdate>2016</risdate><volume>113</volume><issue>39</issue><spage>10938</spage><epage>10943</epage><pages>10938-10943</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Genomic imprinting affects a subset of genes in mammals, such that they are expressed in a monoallelic, parent-of-origin–specific manner. These genes are regulated by imprinting control regions (ICRs), cis-regulatory elements that exhibit allele-specific differential DNA methylation. Although genomic imprinting is conserved in mammals, ICRs are genetically divergent across species. This raises the fundamental question of whether the ICR plays a species-specific role in regulating imprinting at a given locus. We addressed this question at the H19/insulin-like growth factor 2 (Igf2) imprinted locus, the misregulation of which is associated with the human imprinting disorders Beckwith–Wiedemann syndrome (BWS) and Silver–Russell syndrome (SRS). We generated a knock-in mouse in which the endogenous H19/Igf2 ICR (mIC1) is replaced by the orthologous human ICR (hIC1) sequence, designated H19hIC1 . We show that hIC1 can functionally replace mIC1 on the maternal allele. In contrast, paternally transmitted hIC1 leads to growth restriction, abnormal hIC1 methylation, and loss of H19 and Igf2 imprinted expression. Imprint establishment at hIC1 is impaired in the male germ line, which is associated with an abnormal composition of histone posttranslational modifications compared with mIC1. Overall, this study reveals evolutionarily divergent paternal imprinting at IC1 between mice and humans. The conserved maternal imprinting mechanism and function at IC1 demonstrates the possibility of modeling maternal transmission of hIC1 mutations associated with BWS in mice. In addition, we propose that further analyses in the paternal knock-in H19 +/hIC1 mice will elucidate the molecular mechanisms that may underlie SRS.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>27621468</pmid><doi>10.1073/pnas.1603066113</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2016-09, Vol.113 (39), p.10938-10943
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5047210
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Alleles
Animals
Biological Sciences
DNA methylation
DNA Methylation - genetics
Embryo, Mammalian - metabolism
Female
Gene expression
Gene loci
Gene Targeting
Genetic Loci
Genomic Imprinting
Genomics
Genotype & phenotype
Growth disorders
Histones - metabolism
Humans
Insulin-Like Growth Factor II - genetics
Lysine - metabolism
Male
Mice, Inbred C57BL
Phenotype
RNA, Long Noncoding - genetics
Silver-Russell Syndrome - genetics
Silver-Russell Syndrome - pathology
Spermatogenesis - genetics
Spermatozoa - metabolism
title Humanized H19/Igf2 locus reveals diverged imprinting mechanism between mouse and human and reflects Silver–Russell syndrome phenotypes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T05%3A52%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Humanized%20H19/Igf2%20locus%20reveals%20diverged%20imprinting%20mechanism%20between%20mouse%20and%20human%20and%20reflects%20Silver%E2%80%93Russell%20syndrome%20phenotypes&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hur,%20Stella%20K.&rft.date=2016-09-27&rft.volume=113&rft.issue=39&rft.spage=10938&rft.epage=10943&rft.pages=10938-10943&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1603066113&rft_dat=%3Cjstor_pubme%3E26471860%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826416955&rft_id=info:pmid/27621468&rft_jstor_id=26471860&rfr_iscdi=true