Humanized H19/Igf2 locus reveals diverged imprinting mechanism between mouse and human and reflects Silver–Russell syndrome phenotypes
Genomic imprinting affects a subset of genes in mammals, such that they are expressed in a monoallelic, parent-of-origin–specific manner. These genes are regulated by imprinting control regions (ICRs), cis-regulatory elements that exhibit allele-specific differential DNA methylation. Although genomi...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2016-09, Vol.113 (39), p.10938-10943 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10943 |
---|---|
container_issue | 39 |
container_start_page | 10938 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 113 |
creator | Hur, Stella K. Freschi, Andrea Ideraabdullah, Folami Thorvaldsen, Joanne L. Luense, Lacey J. Weller, Angela H. Berger, Shelley L. Cerrato, Flavia Riccio, Andrea Bartolomei, Marisa S. |
description | Genomic imprinting affects a subset of genes in mammals, such that they are expressed in a monoallelic, parent-of-origin–specific manner. These genes are regulated by imprinting control regions (ICRs), cis-regulatory elements that exhibit allele-specific differential DNA methylation. Although genomic imprinting is conserved in mammals, ICRs are genetically divergent across species. This raises the fundamental question of whether the ICR plays a species-specific role in regulating imprinting at a given locus. We addressed this question at the H19/insulin-like growth factor 2 (Igf2) imprinted locus, the misregulation of which is associated with the human imprinting disorders Beckwith–Wiedemann syndrome (BWS) and Silver–Russell syndrome (SRS). We generated a knock-in mouse in which the endogenous H19/Igf2 ICR (mIC1) is replaced by the orthologous human ICR (hIC1) sequence, designated H19hIC1
. We show that hIC1 can functionally replace mIC1 on the maternal allele. In contrast, paternally transmitted hIC1 leads to growth restriction, abnormal hIC1 methylation, and loss of H19 and Igf2 imprinted expression. Imprint establishment at hIC1 is impaired in the male germ line, which is associated with an abnormal composition of histone posttranslational modifications compared with mIC1. Overall, this study reveals evolutionarily divergent paternal imprinting at IC1 between mice and humans. The conserved maternal imprinting mechanism and function at IC1 demonstrates the possibility of modeling maternal transmission of hIC1 mutations associated with BWS in mice. In addition, we propose that further analyses in the paternal knock-in H19
+/hIC1
mice will elucidate the molecular mechanisms that may underlie SRS. |
doi_str_mv | 10.1073/pnas.1603066113 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5047210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26471860</jstor_id><sourcerecordid>26471860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-187d908ce9c7fdbba04ce602146e7e6be7cf68f36c786e1c2fdc45b60c4185773</originalsourceid><addsrcrecordid>eNpVkUtP3DAUhS1EBQPtuqtWlliHuU4c29kgIUQZJKRKfaytxLmZySixUzsZNF112T3_kF9ST4cCXdnSPee7j0PIewbnDGQ2H2wZzpmADIRgLDsgMwYFSwQv4JDMAFKZKJ7yY3ISwhoAilzBETlOpUgZF2pGfi-mvrTtT6zpghXz22WT0s6ZKVCPGyy7QOt2g34Z620_-NaOrV3SHs0qukJPKxzvES3t3RSQlramqx3w789j06EZA_3adpHx-OvhyxQCdh0NW1t71yMdVmjduB0wvCVvmtgO3z29p-T7p-tvV4vk7vPN7dXlXWI4gzFhStYFKIOFkU1dVSVwgwJ226BEUaE0jVBNJoxUAplJm9rwvBIQ7SqXMjslF3vuMFU91gbt6MtOx9X60m-1K1v9f8W2K710G50DlymDCDh7Anj3Y8Iw6rWbvI0za6ZSwZko8jyq5nuV8S6EeInnDgz0Ljq9i06_RBcdH18P9qz_l1UUfNgL1mF0_qUuuGQqcv4AEsmj0w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826416955</pqid></control><display><type>article</type><title>Humanized H19/Igf2 locus reveals diverged imprinting mechanism between mouse and human and reflects Silver–Russell syndrome phenotypes</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hur, Stella K. ; Freschi, Andrea ; Ideraabdullah, Folami ; Thorvaldsen, Joanne L. ; Luense, Lacey J. ; Weller, Angela H. ; Berger, Shelley L. ; Cerrato, Flavia ; Riccio, Andrea ; Bartolomei, Marisa S.</creator><creatorcontrib>Hur, Stella K. ; Freschi, Andrea ; Ideraabdullah, Folami ; Thorvaldsen, Joanne L. ; Luense, Lacey J. ; Weller, Angela H. ; Berger, Shelley L. ; Cerrato, Flavia ; Riccio, Andrea ; Bartolomei, Marisa S.</creatorcontrib><description>Genomic imprinting affects a subset of genes in mammals, such that they are expressed in a monoallelic, parent-of-origin–specific manner. These genes are regulated by imprinting control regions (ICRs), cis-regulatory elements that exhibit allele-specific differential DNA methylation. Although genomic imprinting is conserved in mammals, ICRs are genetically divergent across species. This raises the fundamental question of whether the ICR plays a species-specific role in regulating imprinting at a given locus. We addressed this question at the H19/insulin-like growth factor 2 (Igf2) imprinted locus, the misregulation of which is associated with the human imprinting disorders Beckwith–Wiedemann syndrome (BWS) and Silver–Russell syndrome (SRS). We generated a knock-in mouse in which the endogenous H19/Igf2 ICR (mIC1) is replaced by the orthologous human ICR (hIC1) sequence, designated H19hIC1
. We show that hIC1 can functionally replace mIC1 on the maternal allele. In contrast, paternally transmitted hIC1 leads to growth restriction, abnormal hIC1 methylation, and loss of H19 and Igf2 imprinted expression. Imprint establishment at hIC1 is impaired in the male germ line, which is associated with an abnormal composition of histone posttranslational modifications compared with mIC1. Overall, this study reveals evolutionarily divergent paternal imprinting at IC1 between mice and humans. The conserved maternal imprinting mechanism and function at IC1 demonstrates the possibility of modeling maternal transmission of hIC1 mutations associated with BWS in mice. In addition, we propose that further analyses in the paternal knock-in H19
+/hIC1
mice will elucidate the molecular mechanisms that may underlie SRS.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1603066113</identifier><identifier>PMID: 27621468</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Alleles ; Animals ; Biological Sciences ; DNA methylation ; DNA Methylation - genetics ; Embryo, Mammalian - metabolism ; Female ; Gene expression ; Gene loci ; Gene Targeting ; Genetic Loci ; Genomic Imprinting ; Genomics ; Genotype & phenotype ; Growth disorders ; Histones - metabolism ; Humans ; Insulin-Like Growth Factor II - genetics ; Lysine - metabolism ; Male ; Mice, Inbred C57BL ; Phenotype ; RNA, Long Noncoding - genetics ; Silver-Russell Syndrome - genetics ; Silver-Russell Syndrome - pathology ; Spermatogenesis - genetics ; Spermatozoa - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-09, Vol.113 (39), p.10938-10943</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Sep 27, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-187d908ce9c7fdbba04ce602146e7e6be7cf68f36c786e1c2fdc45b60c4185773</citedby><cites>FETCH-LOGICAL-c410t-187d908ce9c7fdbba04ce602146e7e6be7cf68f36c786e1c2fdc45b60c4185773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26471860$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26471860$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27922,27923,53789,53791,58015,58248</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27621468$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hur, Stella K.</creatorcontrib><creatorcontrib>Freschi, Andrea</creatorcontrib><creatorcontrib>Ideraabdullah, Folami</creatorcontrib><creatorcontrib>Thorvaldsen, Joanne L.</creatorcontrib><creatorcontrib>Luense, Lacey J.</creatorcontrib><creatorcontrib>Weller, Angela H.</creatorcontrib><creatorcontrib>Berger, Shelley L.</creatorcontrib><creatorcontrib>Cerrato, Flavia</creatorcontrib><creatorcontrib>Riccio, Andrea</creatorcontrib><creatorcontrib>Bartolomei, Marisa S.</creatorcontrib><title>Humanized H19/Igf2 locus reveals diverged imprinting mechanism between mouse and human and reflects Silver–Russell syndrome phenotypes</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Genomic imprinting affects a subset of genes in mammals, such that they are expressed in a monoallelic, parent-of-origin–specific manner. These genes are regulated by imprinting control regions (ICRs), cis-regulatory elements that exhibit allele-specific differential DNA methylation. Although genomic imprinting is conserved in mammals, ICRs are genetically divergent across species. This raises the fundamental question of whether the ICR plays a species-specific role in regulating imprinting at a given locus. We addressed this question at the H19/insulin-like growth factor 2 (Igf2) imprinted locus, the misregulation of which is associated with the human imprinting disorders Beckwith–Wiedemann syndrome (BWS) and Silver–Russell syndrome (SRS). We generated a knock-in mouse in which the endogenous H19/Igf2 ICR (mIC1) is replaced by the orthologous human ICR (hIC1) sequence, designated H19hIC1
. We show that hIC1 can functionally replace mIC1 on the maternal allele. In contrast, paternally transmitted hIC1 leads to growth restriction, abnormal hIC1 methylation, and loss of H19 and Igf2 imprinted expression. Imprint establishment at hIC1 is impaired in the male germ line, which is associated with an abnormal composition of histone posttranslational modifications compared with mIC1. Overall, this study reveals evolutionarily divergent paternal imprinting at IC1 between mice and humans. The conserved maternal imprinting mechanism and function at IC1 demonstrates the possibility of modeling maternal transmission of hIC1 mutations associated with BWS in mice. In addition, we propose that further analyses in the paternal knock-in H19
+/hIC1
mice will elucidate the molecular mechanisms that may underlie SRS.</description><subject>Alleles</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>DNA methylation</subject><subject>DNA Methylation - genetics</subject><subject>Embryo, Mammalian - metabolism</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene loci</subject><subject>Gene Targeting</subject><subject>Genetic Loci</subject><subject>Genomic Imprinting</subject><subject>Genomics</subject><subject>Genotype & phenotype</subject><subject>Growth disorders</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Insulin-Like Growth Factor II - genetics</subject><subject>Lysine - metabolism</subject><subject>Male</subject><subject>Mice, Inbred C57BL</subject><subject>Phenotype</subject><subject>RNA, Long Noncoding - genetics</subject><subject>Silver-Russell Syndrome - genetics</subject><subject>Silver-Russell Syndrome - pathology</subject><subject>Spermatogenesis - genetics</subject><subject>Spermatozoa - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUtP3DAUhS1EBQPtuqtWlliHuU4c29kgIUQZJKRKfaytxLmZySixUzsZNF112T3_kF9ST4cCXdnSPee7j0PIewbnDGQ2H2wZzpmADIRgLDsgMwYFSwQv4JDMAFKZKJ7yY3ISwhoAilzBETlOpUgZF2pGfi-mvrTtT6zpghXz22WT0s6ZKVCPGyy7QOt2g34Z620_-NaOrV3SHs0qukJPKxzvES3t3RSQlramqx3w789j06EZA_3adpHx-OvhyxQCdh0NW1t71yMdVmjduB0wvCVvmtgO3z29p-T7p-tvV4vk7vPN7dXlXWI4gzFhStYFKIOFkU1dVSVwgwJ226BEUaE0jVBNJoxUAplJm9rwvBIQ7SqXMjslF3vuMFU91gbt6MtOx9X60m-1K1v9f8W2K710G50DlymDCDh7Anj3Y8Iw6rWbvI0za6ZSwZko8jyq5nuV8S6EeInnDgz0Ljq9i06_RBcdH18P9qz_l1UUfNgL1mF0_qUuuGQqcv4AEsmj0w</recordid><startdate>20160927</startdate><enddate>20160927</enddate><creator>Hur, Stella K.</creator><creator>Freschi, Andrea</creator><creator>Ideraabdullah, Folami</creator><creator>Thorvaldsen, Joanne L.</creator><creator>Luense, Lacey J.</creator><creator>Weller, Angela H.</creator><creator>Berger, Shelley L.</creator><creator>Cerrato, Flavia</creator><creator>Riccio, Andrea</creator><creator>Bartolomei, Marisa S.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20160927</creationdate><title>Humanized H19/Igf2 locus reveals diverged imprinting mechanism between mouse and human and reflects Silver–Russell syndrome phenotypes</title><author>Hur, Stella K. ; Freschi, Andrea ; Ideraabdullah, Folami ; Thorvaldsen, Joanne L. ; Luense, Lacey J. ; Weller, Angela H. ; Berger, Shelley L. ; Cerrato, Flavia ; Riccio, Andrea ; Bartolomei, Marisa S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-187d908ce9c7fdbba04ce602146e7e6be7cf68f36c786e1c2fdc45b60c4185773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alleles</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>DNA methylation</topic><topic>DNA Methylation - genetics</topic><topic>Embryo, Mammalian - metabolism</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene loci</topic><topic>Gene Targeting</topic><topic>Genetic Loci</topic><topic>Genomic Imprinting</topic><topic>Genomics</topic><topic>Genotype & phenotype</topic><topic>Growth disorders</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Insulin-Like Growth Factor II - genetics</topic><topic>Lysine - metabolism</topic><topic>Male</topic><topic>Mice, Inbred C57BL</topic><topic>Phenotype</topic><topic>RNA, Long Noncoding - genetics</topic><topic>Silver-Russell Syndrome - genetics</topic><topic>Silver-Russell Syndrome - pathology</topic><topic>Spermatogenesis - genetics</topic><topic>Spermatozoa - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hur, Stella K.</creatorcontrib><creatorcontrib>Freschi, Andrea</creatorcontrib><creatorcontrib>Ideraabdullah, Folami</creatorcontrib><creatorcontrib>Thorvaldsen, Joanne L.</creatorcontrib><creatorcontrib>Luense, Lacey J.</creatorcontrib><creatorcontrib>Weller, Angela H.</creatorcontrib><creatorcontrib>Berger, Shelley L.</creatorcontrib><creatorcontrib>Cerrato, Flavia</creatorcontrib><creatorcontrib>Riccio, Andrea</creatorcontrib><creatorcontrib>Bartolomei, Marisa S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hur, Stella K.</au><au>Freschi, Andrea</au><au>Ideraabdullah, Folami</au><au>Thorvaldsen, Joanne L.</au><au>Luense, Lacey J.</au><au>Weller, Angela H.</au><au>Berger, Shelley L.</au><au>Cerrato, Flavia</au><au>Riccio, Andrea</au><au>Bartolomei, Marisa S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Humanized H19/Igf2 locus reveals diverged imprinting mechanism between mouse and human and reflects Silver–Russell syndrome phenotypes</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-09-27</date><risdate>2016</risdate><volume>113</volume><issue>39</issue><spage>10938</spage><epage>10943</epage><pages>10938-10943</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Genomic imprinting affects a subset of genes in mammals, such that they are expressed in a monoallelic, parent-of-origin–specific manner. These genes are regulated by imprinting control regions (ICRs), cis-regulatory elements that exhibit allele-specific differential DNA methylation. Although genomic imprinting is conserved in mammals, ICRs are genetically divergent across species. This raises the fundamental question of whether the ICR plays a species-specific role in regulating imprinting at a given locus. We addressed this question at the H19/insulin-like growth factor 2 (Igf2) imprinted locus, the misregulation of which is associated with the human imprinting disorders Beckwith–Wiedemann syndrome (BWS) and Silver–Russell syndrome (SRS). We generated a knock-in mouse in which the endogenous H19/Igf2 ICR (mIC1) is replaced by the orthologous human ICR (hIC1) sequence, designated H19hIC1
. We show that hIC1 can functionally replace mIC1 on the maternal allele. In contrast, paternally transmitted hIC1 leads to growth restriction, abnormal hIC1 methylation, and loss of H19 and Igf2 imprinted expression. Imprint establishment at hIC1 is impaired in the male germ line, which is associated with an abnormal composition of histone posttranslational modifications compared with mIC1. Overall, this study reveals evolutionarily divergent paternal imprinting at IC1 between mice and humans. The conserved maternal imprinting mechanism and function at IC1 demonstrates the possibility of modeling maternal transmission of hIC1 mutations associated with BWS in mice. In addition, we propose that further analyses in the paternal knock-in H19
+/hIC1
mice will elucidate the molecular mechanisms that may underlie SRS.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>27621468</pmid><doi>10.1073/pnas.1603066113</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2016-09, Vol.113 (39), p.10938-10943 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5047210 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Alleles Animals Biological Sciences DNA methylation DNA Methylation - genetics Embryo, Mammalian - metabolism Female Gene expression Gene loci Gene Targeting Genetic Loci Genomic Imprinting Genomics Genotype & phenotype Growth disorders Histones - metabolism Humans Insulin-Like Growth Factor II - genetics Lysine - metabolism Male Mice, Inbred C57BL Phenotype RNA, Long Noncoding - genetics Silver-Russell Syndrome - genetics Silver-Russell Syndrome - pathology Spermatogenesis - genetics Spermatozoa - metabolism |
title | Humanized H19/Igf2 locus reveals diverged imprinting mechanism between mouse and human and reflects Silver–Russell syndrome phenotypes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T05%3A52%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Humanized%20H19/Igf2%20locus%20reveals%20diverged%20imprinting%20mechanism%20between%20mouse%20and%20human%20and%20reflects%20Silver%E2%80%93Russell%20syndrome%20phenotypes&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hur,%20Stella%20K.&rft.date=2016-09-27&rft.volume=113&rft.issue=39&rft.spage=10938&rft.epage=10943&rft.pages=10938-10943&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1603066113&rft_dat=%3Cjstor_pubme%3E26471860%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826416955&rft_id=info:pmid/27621468&rft_jstor_id=26471860&rfr_iscdi=true |