Substrate-Independent Growth of Atomically Precise Chiral Graphene Nanoribbons

Contributing to the need for new graphene nanoribbon (GNR) structures that can be synthesized with atomic precision, we have designed a reactant that renders chiral (3,1)-GNRs after a multistep reaction including Ullmann coupling and cyclodehydrogenation. The nanoribbon synthesis has been successful...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2016-09, Vol.10 (9), p.9000-9008
Hauptverfasser: de Oteyza, Dimas G, García-Lekue, Aran, Vilas-Varela, Manuel, Merino-Díez, Néstor, Carbonell-Sanromà, Eduard, Corso, Martina, Vasseur, Guillaume, Rogero, Celia, Guitián, Enrique, Pascual, Jose Ignacio, Ortega, J. Enrique, Wakayama, Yutaka, Peña, Diego
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9008
container_issue 9
container_start_page 9000
container_title ACS nano
container_volume 10
creator de Oteyza, Dimas G
García-Lekue, Aran
Vilas-Varela, Manuel
Merino-Díez, Néstor
Carbonell-Sanromà, Eduard
Corso, Martina
Vasseur, Guillaume
Rogero, Celia
Guitián, Enrique
Pascual, Jose Ignacio
Ortega, J. Enrique
Wakayama, Yutaka
Peña, Diego
description Contributing to the need for new graphene nanoribbon (GNR) structures that can be synthesized with atomic precision, we have designed a reactant that renders chiral (3,1)-GNRs after a multistep reaction including Ullmann coupling and cyclodehydrogenation. The nanoribbon synthesis has been successfully proven on different coinage metals, and the formation process, together with the fingerprints associated with each reaction step, has been studied by combining scanning tunneling microscopy, core-level spectroscopy, and density functional calculations. In addition to the GNR’s chiral edge structure, the substantial GNR lengths achieved and the low processing temperature required to complete the reaction grant this reactant extremely interesting properties for potential applications.
doi_str_mv 10.1021/acsnano.6b05269
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5043421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1824224929</sourcerecordid><originalsourceid>FETCH-LOGICAL-a495t-be7acf1f99ec4298a37e8910a05834efd7a77fce62fe464a2d5014198749533</originalsourceid><addsrcrecordid>eNp1kcFLwzAYxYMobk7P3qRHQbolado0F2EMnYOhwjx4C2n21XV0yUxaZf-9kdWhBy9JSH7v5fE9hC4JHhJMyUhpb5Sxw6zAKc3EEeoTkWQxzrPX48M5JT105v0a45TnPDtFPcpTFq6zPnpctIVvnGognpklbCEspommzn42q8iW0bixm0qrut5Fzw505SGarCqn6sCo7QoMRI8hgauKwhp_jk5KVXu46PYBWtzfvUwe4vnTdDYZz2PFRNrEBXClS1IKAZpRkauEQy4IVjjNEwblkivOSw0ZLYFlTNFligkjIudBniQDdLt33bbFBpY6JA6B5NZVG-V20qpK_n0x1Uq-2Q-ZYpYwSoLBdWfg7HsLvpGbymuoa2XAtl6SnDJKmaAioKM9qp313kF5-IZg-d2B7DqQXQdBcfU73YH_GXoAbvZAUMq1bZ0Jo_rX7gu1wJRU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1824224929</pqid></control><display><type>article</type><title>Substrate-Independent Growth of Atomically Precise Chiral Graphene Nanoribbons</title><source>ACS Publications</source><creator>de Oteyza, Dimas G ; García-Lekue, Aran ; Vilas-Varela, Manuel ; Merino-Díez, Néstor ; Carbonell-Sanromà, Eduard ; Corso, Martina ; Vasseur, Guillaume ; Rogero, Celia ; Guitián, Enrique ; Pascual, Jose Ignacio ; Ortega, J. Enrique ; Wakayama, Yutaka ; Peña, Diego</creator><creatorcontrib>de Oteyza, Dimas G ; García-Lekue, Aran ; Vilas-Varela, Manuel ; Merino-Díez, Néstor ; Carbonell-Sanromà, Eduard ; Corso, Martina ; Vasseur, Guillaume ; Rogero, Celia ; Guitián, Enrique ; Pascual, Jose Ignacio ; Ortega, J. Enrique ; Wakayama, Yutaka ; Peña, Diego</creatorcontrib><description>Contributing to the need for new graphene nanoribbon (GNR) structures that can be synthesized with atomic precision, we have designed a reactant that renders chiral (3,1)-GNRs after a multistep reaction including Ullmann coupling and cyclodehydrogenation. The nanoribbon synthesis has been successfully proven on different coinage metals, and the formation process, together with the fingerprints associated with each reaction step, has been studied by combining scanning tunneling microscopy, core-level spectroscopy, and density functional calculations. In addition to the GNR’s chiral edge structure, the substantial GNR lengths achieved and the low processing temperature required to complete the reaction grant this reactant extremely interesting properties for potential applications.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.6b05269</identifier><identifier>PMID: 27548516</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2016-09, Vol.10 (9), p.9000-9008</ispartof><rights>Copyright © 2016 American Chemical Society</rights><rights>Copyright © 2016 American Chemical Society 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a495t-be7acf1f99ec4298a37e8910a05834efd7a77fce62fe464a2d5014198749533</citedby><cites>FETCH-LOGICAL-a495t-be7acf1f99ec4298a37e8910a05834efd7a77fce62fe464a2d5014198749533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.6b05269$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.6b05269$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27548516$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Oteyza, Dimas G</creatorcontrib><creatorcontrib>García-Lekue, Aran</creatorcontrib><creatorcontrib>Vilas-Varela, Manuel</creatorcontrib><creatorcontrib>Merino-Díez, Néstor</creatorcontrib><creatorcontrib>Carbonell-Sanromà, Eduard</creatorcontrib><creatorcontrib>Corso, Martina</creatorcontrib><creatorcontrib>Vasseur, Guillaume</creatorcontrib><creatorcontrib>Rogero, Celia</creatorcontrib><creatorcontrib>Guitián, Enrique</creatorcontrib><creatorcontrib>Pascual, Jose Ignacio</creatorcontrib><creatorcontrib>Ortega, J. Enrique</creatorcontrib><creatorcontrib>Wakayama, Yutaka</creatorcontrib><creatorcontrib>Peña, Diego</creatorcontrib><title>Substrate-Independent Growth of Atomically Precise Chiral Graphene Nanoribbons</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Contributing to the need for new graphene nanoribbon (GNR) structures that can be synthesized with atomic precision, we have designed a reactant that renders chiral (3,1)-GNRs after a multistep reaction including Ullmann coupling and cyclodehydrogenation. The nanoribbon synthesis has been successfully proven on different coinage metals, and the formation process, together with the fingerprints associated with each reaction step, has been studied by combining scanning tunneling microscopy, core-level spectroscopy, and density functional calculations. In addition to the GNR’s chiral edge structure, the substantial GNR lengths achieved and the low processing temperature required to complete the reaction grant this reactant extremely interesting properties for potential applications.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kcFLwzAYxYMobk7P3qRHQbolado0F2EMnYOhwjx4C2n21XV0yUxaZf-9kdWhBy9JSH7v5fE9hC4JHhJMyUhpb5Sxw6zAKc3EEeoTkWQxzrPX48M5JT105v0a45TnPDtFPcpTFq6zPnpctIVvnGognpklbCEspommzn42q8iW0bixm0qrut5Fzw505SGarCqn6sCo7QoMRI8hgauKwhp_jk5KVXu46PYBWtzfvUwe4vnTdDYZz2PFRNrEBXClS1IKAZpRkauEQy4IVjjNEwblkivOSw0ZLYFlTNFligkjIudBniQDdLt33bbFBpY6JA6B5NZVG-V20qpK_n0x1Uq-2Q-ZYpYwSoLBdWfg7HsLvpGbymuoa2XAtl6SnDJKmaAioKM9qp313kF5-IZg-d2B7DqQXQdBcfU73YH_GXoAbvZAUMq1bZ0Jo_rX7gu1wJRU</recordid><startdate>20160927</startdate><enddate>20160927</enddate><creator>de Oteyza, Dimas G</creator><creator>García-Lekue, Aran</creator><creator>Vilas-Varela, Manuel</creator><creator>Merino-Díez, Néstor</creator><creator>Carbonell-Sanromà, Eduard</creator><creator>Corso, Martina</creator><creator>Vasseur, Guillaume</creator><creator>Rogero, Celia</creator><creator>Guitián, Enrique</creator><creator>Pascual, Jose Ignacio</creator><creator>Ortega, J. Enrique</creator><creator>Wakayama, Yutaka</creator><creator>Peña, Diego</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160927</creationdate><title>Substrate-Independent Growth of Atomically Precise Chiral Graphene Nanoribbons</title><author>de Oteyza, Dimas G ; García-Lekue, Aran ; Vilas-Varela, Manuel ; Merino-Díez, Néstor ; Carbonell-Sanromà, Eduard ; Corso, Martina ; Vasseur, Guillaume ; Rogero, Celia ; Guitián, Enrique ; Pascual, Jose Ignacio ; Ortega, J. Enrique ; Wakayama, Yutaka ; Peña, Diego</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a495t-be7acf1f99ec4298a37e8910a05834efd7a77fce62fe464a2d5014198749533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Oteyza, Dimas G</creatorcontrib><creatorcontrib>García-Lekue, Aran</creatorcontrib><creatorcontrib>Vilas-Varela, Manuel</creatorcontrib><creatorcontrib>Merino-Díez, Néstor</creatorcontrib><creatorcontrib>Carbonell-Sanromà, Eduard</creatorcontrib><creatorcontrib>Corso, Martina</creatorcontrib><creatorcontrib>Vasseur, Guillaume</creatorcontrib><creatorcontrib>Rogero, Celia</creatorcontrib><creatorcontrib>Guitián, Enrique</creatorcontrib><creatorcontrib>Pascual, Jose Ignacio</creatorcontrib><creatorcontrib>Ortega, J. Enrique</creatorcontrib><creatorcontrib>Wakayama, Yutaka</creatorcontrib><creatorcontrib>Peña, Diego</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Oteyza, Dimas G</au><au>García-Lekue, Aran</au><au>Vilas-Varela, Manuel</au><au>Merino-Díez, Néstor</au><au>Carbonell-Sanromà, Eduard</au><au>Corso, Martina</au><au>Vasseur, Guillaume</au><au>Rogero, Celia</au><au>Guitián, Enrique</au><au>Pascual, Jose Ignacio</au><au>Ortega, J. Enrique</au><au>Wakayama, Yutaka</au><au>Peña, Diego</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Substrate-Independent Growth of Atomically Precise Chiral Graphene Nanoribbons</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2016-09-27</date><risdate>2016</risdate><volume>10</volume><issue>9</issue><spage>9000</spage><epage>9008</epage><pages>9000-9008</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Contributing to the need for new graphene nanoribbon (GNR) structures that can be synthesized with atomic precision, we have designed a reactant that renders chiral (3,1)-GNRs after a multistep reaction including Ullmann coupling and cyclodehydrogenation. The nanoribbon synthesis has been successfully proven on different coinage metals, and the formation process, together with the fingerprints associated with each reaction step, has been studied by combining scanning tunneling microscopy, core-level spectroscopy, and density functional calculations. In addition to the GNR’s chiral edge structure, the substantial GNR lengths achieved and the low processing temperature required to complete the reaction grant this reactant extremely interesting properties for potential applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27548516</pmid><doi>10.1021/acsnano.6b05269</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2016-09, Vol.10 (9), p.9000-9008
issn 1936-0851
1936-086X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5043421
source ACS Publications
title Substrate-Independent Growth of Atomically Precise Chiral Graphene Nanoribbons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T21%3A13%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Substrate-Independent%20Growth%20of%20Atomically%20Precise%20Chiral%20Graphene%20Nanoribbons&rft.jtitle=ACS%20nano&rft.au=de%20Oteyza,%20Dimas%20G&rft.date=2016-09-27&rft.volume=10&rft.issue=9&rft.spage=9000&rft.epage=9008&rft.pages=9000-9008&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.6b05269&rft_dat=%3Cproquest_pubme%3E1824224929%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1824224929&rft_id=info:pmid/27548516&rfr_iscdi=true