A High-Throughput, Arbitrary-Waveform, MPI Spectrometer and Relaxometer for Comprehensive Magnetic Particle Optimization and Characterization

Magnetic Particle Imaging (MPI) is a promising new tracer modality with zero attenuation deep in tissue, high contrast and sensitivity, and an excellent safety profile. However, the spatial resolution of MPI is limited to around 1 mm currently and urgently needs to be improved for clinical applicati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-09, Vol.6 (1), p.34180-34180, Article 34180
Hauptverfasser: Tay, Zhi Wei, Goodwill, Patrick W., Hensley, Daniel W., Taylor, Laura A., Zheng, Bo, Conolly, Steven M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34180
container_issue 1
container_start_page 34180
container_title Scientific reports
container_volume 6
creator Tay, Zhi Wei
Goodwill, Patrick W.
Hensley, Daniel W.
Taylor, Laura A.
Zheng, Bo
Conolly, Steven M.
description Magnetic Particle Imaging (MPI) is a promising new tracer modality with zero attenuation deep in tissue, high contrast and sensitivity, and an excellent safety profile. However, the spatial resolution of MPI is limited to around 1 mm currently and urgently needs to be improved for clinical applications such as angiography and brain perfusion. Although MPI resolution is highly dependent on tracer characteristics and the drive waveforms, optimization is limited to a small subset of possible excitation strategies by current MPI hardware that only does sinusoidal drive waveforms at very few frequencies. To enable a more comprehensive and rapid optimization of drive waveforms for multiple metrics like resolution and signal strength simultaneously, we demonstrate the first untuned MPI spectrometer/relaxometer with unprecedented 400 kHz excitation bandwidth and capable of high-throughput acquisition of harmonic spectra (100 different drive-field frequencies in only 500 ms). It is also capable of arbitrary drive-field waveforms which have not been experimentally evaluated in MPI to date. Its high-throughput capability, frequency-agility and tabletop size makes this Arbitrary Waveform Relaxometer/Spectrometer (AWR) a convenient yet powerfully flexible tool for nanoparticle experts seeking to characterize magnetic particles and optimize MPI drive waveforms for in vitro biosensing and in vivo imaging with MPI.
doi_str_mv 10.1038/srep34180
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5043240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899093951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-b47b0a2cc795b24b1d06c1832c0df7b982e660fe6ef06621d140959f008d59ad3</originalsourceid><addsrcrecordid>eNplkc1u1DAUhS0EolXpghdAltgAaort2Jl4gzQaQVupVSsoYmk5zk3iKolT2xkB78A74zLDaCjeXP98PvceHYReUnJKSV6-Dx6mnNOSPEGHjHCRsZyxp3v7A3Qcwh1JSzDJqXyODtiiKIuCyUP0a4nPbdtlt513c9tNczzBS1_Z6LX_kX3Ta2icH07w1c0F_jKBid4NEMFjPdb4M_T6-_acMLxyw-ShgzHYNeAr3Y4QrcE32qfSA76eoh3sTx2tG_8IrDrttUnft5cv0LNG9wGOt_UIff308XZ1nl1en12slpeZEYTHrOKLimhmzEKKivGK1qQwtMyZIXWzqGTJoChIAwU0JNmkNeVECtkQUtZC6jo_Qh82utNcDVAbGJPfXk3eDsm2ctqqf19G26nWrVVqnzNOksCbrYB39zOEqAYbDPS9HsHNQaVhBKdCFjyhrx-hd272Y7KXKCmJzKWgiXq7oYx3IUXa7IahRD3krHY5J_bV_vQ78m-qCXi3AUJ6Glvwey3_U_sNR0G0Yw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899093951</pqid></control><display><type>article</type><title>A High-Throughput, Arbitrary-Waveform, MPI Spectrometer and Relaxometer for Comprehensive Magnetic Particle Optimization and Characterization</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Tay, Zhi Wei ; Goodwill, Patrick W. ; Hensley, Daniel W. ; Taylor, Laura A. ; Zheng, Bo ; Conolly, Steven M.</creator><creatorcontrib>Tay, Zhi Wei ; Goodwill, Patrick W. ; Hensley, Daniel W. ; Taylor, Laura A. ; Zheng, Bo ; Conolly, Steven M.</creatorcontrib><description>Magnetic Particle Imaging (MPI) is a promising new tracer modality with zero attenuation deep in tissue, high contrast and sensitivity, and an excellent safety profile. However, the spatial resolution of MPI is limited to around 1 mm currently and urgently needs to be improved for clinical applications such as angiography and brain perfusion. Although MPI resolution is highly dependent on tracer characteristics and the drive waveforms, optimization is limited to a small subset of possible excitation strategies by current MPI hardware that only does sinusoidal drive waveforms at very few frequencies. To enable a more comprehensive and rapid optimization of drive waveforms for multiple metrics like resolution and signal strength simultaneously, we demonstrate the first untuned MPI spectrometer/relaxometer with unprecedented 400 kHz excitation bandwidth and capable of high-throughput acquisition of harmonic spectra (100 different drive-field frequencies in only 500 ms). It is also capable of arbitrary drive-field waveforms which have not been experimentally evaluated in MPI to date. Its high-throughput capability, frequency-agility and tabletop size makes this Arbitrary Waveform Relaxometer/Spectrometer (AWR) a convenient yet powerfully flexible tool for nanoparticle experts seeking to characterize magnetic particles and optimize MPI drive waveforms for in vitro biosensing and in vivo imaging with MPI.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep34180</identifier><identifier>PMID: 27686629</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/985 ; 639/166/987 ; Angiography ; Bandwidths ; Biodistribution ; Biosensors ; Design ; Humanities and Social Sciences ; Medical imaging ; multidisciplinary ; Nanoparticles ; Neuroimaging ; Nuclear medicine ; Optimization ; Perfusion ; Science ; Spatial discrimination ; Stem cells ; Therapeutic applications</subject><ispartof>Scientific reports, 2016-09, Vol.6 (1), p.34180-34180, Article 34180</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Sep 2016</rights><rights>Copyright © 2016, The Author(s) 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-b47b0a2cc795b24b1d06c1832c0df7b982e660fe6ef06621d140959f008d59ad3</citedby><cites>FETCH-LOGICAL-c504t-b47b0a2cc795b24b1d06c1832c0df7b982e660fe6ef06621d140959f008d59ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5043240/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5043240/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,27911,27912,41107,42176,51563,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27686629$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tay, Zhi Wei</creatorcontrib><creatorcontrib>Goodwill, Patrick W.</creatorcontrib><creatorcontrib>Hensley, Daniel W.</creatorcontrib><creatorcontrib>Taylor, Laura A.</creatorcontrib><creatorcontrib>Zheng, Bo</creatorcontrib><creatorcontrib>Conolly, Steven M.</creatorcontrib><title>A High-Throughput, Arbitrary-Waveform, MPI Spectrometer and Relaxometer for Comprehensive Magnetic Particle Optimization and Characterization</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Magnetic Particle Imaging (MPI) is a promising new tracer modality with zero attenuation deep in tissue, high contrast and sensitivity, and an excellent safety profile. However, the spatial resolution of MPI is limited to around 1 mm currently and urgently needs to be improved for clinical applications such as angiography and brain perfusion. Although MPI resolution is highly dependent on tracer characteristics and the drive waveforms, optimization is limited to a small subset of possible excitation strategies by current MPI hardware that only does sinusoidal drive waveforms at very few frequencies. To enable a more comprehensive and rapid optimization of drive waveforms for multiple metrics like resolution and signal strength simultaneously, we demonstrate the first untuned MPI spectrometer/relaxometer with unprecedented 400 kHz excitation bandwidth and capable of high-throughput acquisition of harmonic spectra (100 different drive-field frequencies in only 500 ms). It is also capable of arbitrary drive-field waveforms which have not been experimentally evaluated in MPI to date. Its high-throughput capability, frequency-agility and tabletop size makes this Arbitrary Waveform Relaxometer/Spectrometer (AWR) a convenient yet powerfully flexible tool for nanoparticle experts seeking to characterize magnetic particles and optimize MPI drive waveforms for in vitro biosensing and in vivo imaging with MPI.</description><subject>639/166/985</subject><subject>639/166/987</subject><subject>Angiography</subject><subject>Bandwidths</subject><subject>Biodistribution</subject><subject>Biosensors</subject><subject>Design</subject><subject>Humanities and Social Sciences</subject><subject>Medical imaging</subject><subject>multidisciplinary</subject><subject>Nanoparticles</subject><subject>Neuroimaging</subject><subject>Nuclear medicine</subject><subject>Optimization</subject><subject>Perfusion</subject><subject>Science</subject><subject>Spatial discrimination</subject><subject>Stem cells</subject><subject>Therapeutic applications</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkc1u1DAUhS0EolXpghdAltgAaort2Jl4gzQaQVupVSsoYmk5zk3iKolT2xkB78A74zLDaCjeXP98PvceHYReUnJKSV6-Dx6mnNOSPEGHjHCRsZyxp3v7A3Qcwh1JSzDJqXyODtiiKIuCyUP0a4nPbdtlt513c9tNczzBS1_Z6LX_kX3Ta2icH07w1c0F_jKBid4NEMFjPdb4M_T6-_acMLxyw-ShgzHYNeAr3Y4QrcE32qfSA76eoh3sTx2tG_8IrDrttUnft5cv0LNG9wGOt_UIff308XZ1nl1en12slpeZEYTHrOKLimhmzEKKivGK1qQwtMyZIXWzqGTJoChIAwU0JNmkNeVECtkQUtZC6jo_Qh82utNcDVAbGJPfXk3eDsm2ctqqf19G26nWrVVqnzNOksCbrYB39zOEqAYbDPS9HsHNQaVhBKdCFjyhrx-hd272Y7KXKCmJzKWgiXq7oYx3IUXa7IahRD3krHY5J_bV_vQ78m-qCXi3AUJ6Glvwey3_U_sNR0G0Yw</recordid><startdate>20160930</startdate><enddate>20160930</enddate><creator>Tay, Zhi Wei</creator><creator>Goodwill, Patrick W.</creator><creator>Hensley, Daniel W.</creator><creator>Taylor, Laura A.</creator><creator>Zheng, Bo</creator><creator>Conolly, Steven M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160930</creationdate><title>A High-Throughput, Arbitrary-Waveform, MPI Spectrometer and Relaxometer for Comprehensive Magnetic Particle Optimization and Characterization</title><author>Tay, Zhi Wei ; Goodwill, Patrick W. ; Hensley, Daniel W. ; Taylor, Laura A. ; Zheng, Bo ; Conolly, Steven M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-b47b0a2cc795b24b1d06c1832c0df7b982e660fe6ef06621d140959f008d59ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/166/985</topic><topic>639/166/987</topic><topic>Angiography</topic><topic>Bandwidths</topic><topic>Biodistribution</topic><topic>Biosensors</topic><topic>Design</topic><topic>Humanities and Social Sciences</topic><topic>Medical imaging</topic><topic>multidisciplinary</topic><topic>Nanoparticles</topic><topic>Neuroimaging</topic><topic>Nuclear medicine</topic><topic>Optimization</topic><topic>Perfusion</topic><topic>Science</topic><topic>Spatial discrimination</topic><topic>Stem cells</topic><topic>Therapeutic applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tay, Zhi Wei</creatorcontrib><creatorcontrib>Goodwill, Patrick W.</creatorcontrib><creatorcontrib>Hensley, Daniel W.</creatorcontrib><creatorcontrib>Taylor, Laura A.</creatorcontrib><creatorcontrib>Zheng, Bo</creatorcontrib><creatorcontrib>Conolly, Steven M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tay, Zhi Wei</au><au>Goodwill, Patrick W.</au><au>Hensley, Daniel W.</au><au>Taylor, Laura A.</au><au>Zheng, Bo</au><au>Conolly, Steven M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A High-Throughput, Arbitrary-Waveform, MPI Spectrometer and Relaxometer for Comprehensive Magnetic Particle Optimization and Characterization</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-09-30</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>34180</spage><epage>34180</epage><pages>34180-34180</pages><artnum>34180</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Magnetic Particle Imaging (MPI) is a promising new tracer modality with zero attenuation deep in tissue, high contrast and sensitivity, and an excellent safety profile. However, the spatial resolution of MPI is limited to around 1 mm currently and urgently needs to be improved for clinical applications such as angiography and brain perfusion. Although MPI resolution is highly dependent on tracer characteristics and the drive waveforms, optimization is limited to a small subset of possible excitation strategies by current MPI hardware that only does sinusoidal drive waveforms at very few frequencies. To enable a more comprehensive and rapid optimization of drive waveforms for multiple metrics like resolution and signal strength simultaneously, we demonstrate the first untuned MPI spectrometer/relaxometer with unprecedented 400 kHz excitation bandwidth and capable of high-throughput acquisition of harmonic spectra (100 different drive-field frequencies in only 500 ms). It is also capable of arbitrary drive-field waveforms which have not been experimentally evaluated in MPI to date. Its high-throughput capability, frequency-agility and tabletop size makes this Arbitrary Waveform Relaxometer/Spectrometer (AWR) a convenient yet powerfully flexible tool for nanoparticle experts seeking to characterize magnetic particles and optimize MPI drive waveforms for in vitro biosensing and in vivo imaging with MPI.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27686629</pmid><doi>10.1038/srep34180</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-09, Vol.6 (1), p.34180-34180, Article 34180
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5043240
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 639/166/985
639/166/987
Angiography
Bandwidths
Biodistribution
Biosensors
Design
Humanities and Social Sciences
Medical imaging
multidisciplinary
Nanoparticles
Neuroimaging
Nuclear medicine
Optimization
Perfusion
Science
Spatial discrimination
Stem cells
Therapeutic applications
title A High-Throughput, Arbitrary-Waveform, MPI Spectrometer and Relaxometer for Comprehensive Magnetic Particle Optimization and Characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T04%3A58%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20High-Throughput,%20Arbitrary-Waveform,%20MPI%20Spectrometer%20and%20Relaxometer%20for%20Comprehensive%20Magnetic%20Particle%20Optimization%20and%20Characterization&rft.jtitle=Scientific%20reports&rft.au=Tay,%20Zhi%20Wei&rft.date=2016-09-30&rft.volume=6&rft.issue=1&rft.spage=34180&rft.epage=34180&rft.pages=34180-34180&rft.artnum=34180&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep34180&rft_dat=%3Cproquest_pubme%3E1899093951%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899093951&rft_id=info:pmid/27686629&rfr_iscdi=true