Microbial diversity arising from thermodynamic constraints
The microbial world displays an immense taxonomic diversity. This diversity is manifested also in a multitude of metabolic pathways that can utilise different substrates and produce different products. Here, we propose that these observations directly link to thermodynamic constraints that inherentl...
Gespeichert in:
Veröffentlicht in: | The ISME Journal 2016-11, Vol.10 (11), p.2725-2733 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2733 |
---|---|
container_issue | 11 |
container_start_page | 2725 |
container_title | The ISME Journal |
container_volume | 10 |
creator | Großkopf, Tobias Soyer, Orkun S |
description | The microbial world displays an immense taxonomic diversity. This diversity is manifested also in a multitude of metabolic pathways that can utilise different substrates and produce different products. Here, we propose that these observations directly link to thermodynamic constraints that inherently arise from the metabolic basis of microbial growth. We show that thermodynamic constraints can enable coexistence of microbes that utilise the same substrate but produce different end products. We find that this thermodynamics-driven emergence of diversity is most relevant for metabolic conversions with low free energy as seen for example under anaerobic conditions, where population dynamics is governed by thermodynamic effects rather than kinetic factors such as substrate uptake rates. These findings provide a general understanding of the microbial diversity based on the first principles of thermodynamics. As such they provide a thermodynamics-based framework for explaining the observed microbial diversity in different natural and synthetic environments. |
doi_str_mv | 10.1038/ismej.2016.49 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5042319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4226398111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-c3e91a51236f07a171101358cfc767843b1ad2f00c260000ca559ba2098e49703</originalsourceid><addsrcrecordid>eNqNkUtLxDAUhYMovpdupeDGTcd7k6ZpXQgivkBxo-uQyaRjhjbRpCPMvzd1dFBxYTYJ3I9zT84h5ABhhMCqExs7MxtRwHJU1GtkGwXHXDAB66t3SbfITowzAC7KUmySLSqAcQF8m5zeWx382Ko2m9g3E6LtF5kKNlo3zZrgu6x_NqHzk4VTndWZ9i72QVnXxz2y0ag2mv3Pe5c8XV0-Xtzkdw_Xtxfnd7kuKtHnmpkaFUfKygaEQoEIyHilGy1KURVsjGpCGwBNS0hHK87rsaJQV6aok9FdcrbUfZmPOzPRxiUDrXwJtlNhIb2y8ufE2Wc59W-SQ0EZ1kng-FMg-Ne5ib3sbNSmbZUzfh4lVkwwLEDQf6A0JUiRDraOfqEzPw8uJTEIoqhYCcPufEmllGMMpln5RpBDgfKjQDkUKIuBP_z-2RX91VgCRksgppGbmvBt7Z-K77Rspfk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1831783609</pqid></control><display><type>article</type><title>Microbial diversity arising from thermodynamic constraints</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Großkopf, Tobias ; Soyer, Orkun S</creator><creatorcontrib>Großkopf, Tobias ; Soyer, Orkun S</creatorcontrib><description>The microbial world displays an immense taxonomic diversity. This diversity is manifested also in a multitude of metabolic pathways that can utilise different substrates and produce different products. Here, we propose that these observations directly link to thermodynamic constraints that inherently arise from the metabolic basis of microbial growth. We show that thermodynamic constraints can enable coexistence of microbes that utilise the same substrate but produce different end products. We find that this thermodynamics-driven emergence of diversity is most relevant for metabolic conversions with low free energy as seen for example under anaerobic conditions, where population dynamics is governed by thermodynamic effects rather than kinetic factors such as substrate uptake rates. These findings provide a general understanding of the microbial diversity based on the first principles of thermodynamics. As such they provide a thermodynamics-based framework for explaining the observed microbial diversity in different natural and synthetic environments.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/ismej.2016.49</identifier><identifier>PMID: 27035705</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/158/855 ; 631/45/47 ; Anaerobic conditions ; Bacteria - chemistry ; Bacteria - genetics ; Bacteria - growth & development ; Bacteria - metabolism ; Biodiversity ; Biomedical and Life Sciences ; Ecology ; Evolutionary Biology ; Kinetics ; Life Sciences ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Models, Biological ; Original ; original-article ; Thermodynamics</subject><ispartof>The ISME Journal, 2016-11, Vol.10 (11), p.2725-2733</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Nov 2016</rights><rights>Copyright © 2016 International Society for Microbial Ecology 2016 International Society for Microbial Ecology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-c3e91a51236f07a171101358cfc767843b1ad2f00c260000ca559ba2098e49703</citedby><cites>FETCH-LOGICAL-c487t-c3e91a51236f07a171101358cfc767843b1ad2f00c260000ca559ba2098e49703</cites><orcidid>0000-0002-9504-3796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5042319/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5042319/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27035705$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Großkopf, Tobias</creatorcontrib><creatorcontrib>Soyer, Orkun S</creatorcontrib><title>Microbial diversity arising from thermodynamic constraints</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>The microbial world displays an immense taxonomic diversity. This diversity is manifested also in a multitude of metabolic pathways that can utilise different substrates and produce different products. Here, we propose that these observations directly link to thermodynamic constraints that inherently arise from the metabolic basis of microbial growth. We show that thermodynamic constraints can enable coexistence of microbes that utilise the same substrate but produce different end products. We find that this thermodynamics-driven emergence of diversity is most relevant for metabolic conversions with low free energy as seen for example under anaerobic conditions, where population dynamics is governed by thermodynamic effects rather than kinetic factors such as substrate uptake rates. These findings provide a general understanding of the microbial diversity based on the first principles of thermodynamics. As such they provide a thermodynamics-based framework for explaining the observed microbial diversity in different natural and synthetic environments.</description><subject>631/158/855</subject><subject>631/45/47</subject><subject>Anaerobic conditions</subject><subject>Bacteria - chemistry</subject><subject>Bacteria - genetics</subject><subject>Bacteria - growth & development</subject><subject>Bacteria - metabolism</subject><subject>Biodiversity</subject><subject>Biomedical and Life Sciences</subject><subject>Ecology</subject><subject>Evolutionary Biology</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Models, Biological</subject><subject>Original</subject><subject>original-article</subject><subject>Thermodynamics</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkUtLxDAUhYMovpdupeDGTcd7k6ZpXQgivkBxo-uQyaRjhjbRpCPMvzd1dFBxYTYJ3I9zT84h5ABhhMCqExs7MxtRwHJU1GtkGwXHXDAB66t3SbfITowzAC7KUmySLSqAcQF8m5zeWx382Ko2m9g3E6LtF5kKNlo3zZrgu6x_NqHzk4VTndWZ9i72QVnXxz2y0ag2mv3Pe5c8XV0-Xtzkdw_Xtxfnd7kuKtHnmpkaFUfKygaEQoEIyHilGy1KURVsjGpCGwBNS0hHK87rsaJQV6aok9FdcrbUfZmPOzPRxiUDrXwJtlNhIb2y8ufE2Wc59W-SQ0EZ1kng-FMg-Ne5ib3sbNSmbZUzfh4lVkwwLEDQf6A0JUiRDraOfqEzPw8uJTEIoqhYCcPufEmllGMMpln5RpBDgfKjQDkUKIuBP_z-2RX91VgCRksgppGbmvBt7Z-K77Rspfk</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Großkopf, Tobias</creator><creator>Soyer, Orkun S</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9504-3796</orcidid></search><sort><creationdate>20161101</creationdate><title>Microbial diversity arising from thermodynamic constraints</title><author>Großkopf, Tobias ; Soyer, Orkun S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-c3e91a51236f07a171101358cfc767843b1ad2f00c260000ca559ba2098e49703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>631/158/855</topic><topic>631/45/47</topic><topic>Anaerobic conditions</topic><topic>Bacteria - chemistry</topic><topic>Bacteria - genetics</topic><topic>Bacteria - growth & development</topic><topic>Bacteria - metabolism</topic><topic>Biodiversity</topic><topic>Biomedical and Life Sciences</topic><topic>Ecology</topic><topic>Evolutionary Biology</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Models, Biological</topic><topic>Original</topic><topic>original-article</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Großkopf, Tobias</creatorcontrib><creatorcontrib>Soyer, Orkun S</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Großkopf, Tobias</au><au>Soyer, Orkun S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial diversity arising from thermodynamic constraints</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2016-11-01</date><risdate>2016</risdate><volume>10</volume><issue>11</issue><spage>2725</spage><epage>2733</epage><pages>2725-2733</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>The microbial world displays an immense taxonomic diversity. This diversity is manifested also in a multitude of metabolic pathways that can utilise different substrates and produce different products. Here, we propose that these observations directly link to thermodynamic constraints that inherently arise from the metabolic basis of microbial growth. We show that thermodynamic constraints can enable coexistence of microbes that utilise the same substrate but produce different end products. We find that this thermodynamics-driven emergence of diversity is most relevant for metabolic conversions with low free energy as seen for example under anaerobic conditions, where population dynamics is governed by thermodynamic effects rather than kinetic factors such as substrate uptake rates. These findings provide a general understanding of the microbial diversity based on the first principles of thermodynamics. As such they provide a thermodynamics-based framework for explaining the observed microbial diversity in different natural and synthetic environments.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27035705</pmid><doi>10.1038/ismej.2016.49</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9504-3796</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-7362 |
ispartof | The ISME Journal, 2016-11, Vol.10 (11), p.2725-2733 |
issn | 1751-7362 1751-7370 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5042319 |
source | Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | 631/158/855 631/45/47 Anaerobic conditions Bacteria - chemistry Bacteria - genetics Bacteria - growth & development Bacteria - metabolism Biodiversity Biomedical and Life Sciences Ecology Evolutionary Biology Kinetics Life Sciences Microbial Ecology Microbial Genetics and Genomics Microbiology Models, Biological Original original-article Thermodynamics |
title | Microbial diversity arising from thermodynamic constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T07%3A27%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20diversity%20arising%20from%20thermodynamic%20constraints&rft.jtitle=The%20ISME%20Journal&rft.au=Gro%C3%9Fkopf,%20Tobias&rft.date=2016-11-01&rft.volume=10&rft.issue=11&rft.spage=2725&rft.epage=2733&rft.pages=2725-2733&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/ismej.2016.49&rft_dat=%3Cproquest_pubme%3E4226398111%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1831783609&rft_id=info:pmid/27035705&rfr_iscdi=true |