Minibrain and Wings apart control organ growth and tissue patterning through down-regulation of Capicua

The transcriptional repressor Capicua (Cic) controls tissue patterning and restricts organ growth, and has been recently implicated in several cancers. Cic has emerged as a primary sensor of signaling downstream of the receptor tyrosine kinase (RTK)/extracellular signal-regulated kinase (ERK) pathwa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2016-09, Vol.113 (38), p.10583-10588
Hauptverfasser: Yang, Liu, Paul, Sayantanee, Trieu, Kenneth G., Dent, Lucas G., Froldi, Francesca, Forés, Marta, Webster, Kaitlyn, Siegfried, Kellee R., Kondo, Shu, Harvey, Kieran, Cheng, Louise, Jiménez, Gerardo, Shvartsman, Stanislav Y., Veraksa, Alexey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10588
container_issue 38
container_start_page 10583
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 113
creator Yang, Liu
Paul, Sayantanee
Trieu, Kenneth G.
Dent, Lucas G.
Froldi, Francesca
Forés, Marta
Webster, Kaitlyn
Siegfried, Kellee R.
Kondo, Shu
Harvey, Kieran
Cheng, Louise
Jiménez, Gerardo
Shvartsman, Stanislav Y.
Veraksa, Alexey
description The transcriptional repressor Capicua (Cic) controls tissue patterning and restricts organ growth, and has been recently implicated in several cancers. Cic has emerged as a primary sensor of signaling downstream of the receptor tyrosine kinase (RTK)/extracellular signal-regulated kinase (ERK) pathway, but how Cic activity is regulated in different cellular contexts remains poorly understood. We found that the kinase Minibrain (Mnb, ortholog of mammalian DYRK1A), acting through the adaptor protein Wings apart (Wap), physically interacts with and phosphorylates the Cic protein. Mnb and Wap inhibit Cic function by limiting its transcriptional repressor activity. Down-regulation of Cic by Mnb/Wap is necessary for promoting the growth of multiple organs, including the wings, eyes, and the brain, and for proper tissue patterning in the wing. We have thus uncovered a previously unknown mechanism of down-regulation of Cic activity by Mnb and Wap, which operates independently from the ERK-mediated control of Cic. Therefore, Cic functions as an integrator of upstream signals that are essential for tissue patterning and organ growth. Finally, because DYRK1A and CIC exhibit, respectively, prooncogenic vs. tumor suppressor activities in human oligodendroglioma, our results raise the possibility that DYRK1A may also down-regulate CIC in human cells.
doi_str_mv 10.1073/pnas.1609417113
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5035877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26471632</jstor_id><sourcerecordid>26471632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-e402cbe263664e8f24466d320561573fcbd8fb2ae3e04aaa6b22b0d10ddef6613</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxa0KRJfCuSeQpV64pB1_xEkulaoVX1IRl1YcrUniZL3K2qnttOK_x8uWFjjNYX7vzTw9Qk4ZnDOoxMXsMJ4zBY1kFWPiiKwYNKxQsoEXZAXAq6KWXB6T1zFuAaApa3hFjnmlgCnFV2T8Zp1tA1pH0fX0h3VjpDhjSLTzLgU_UR9GdHQM_iFtfkPJxrgYOmNKJrisoGkT_DJuaO8fXBHMuEyYrHfUD3SNs-0WfENeDjhF8_ZxnpDbTx9v1l-K6--fv66vrouuhCYVRgLvWsOVUEqaeuBSKtULDqViZSWGru3roeVohAGJiKrlvIWeQd-bQSkmTsjlwXde2p3pO5Mz4KTnYHcYfmqPVv-7cXajR3-vSxBlXVXZ4MOjQfB3i4lJ72zszDShM36JmtWc558Y7G-d_Ydu_RJcjrenSikaIXimLg5UF3yMwQxPzzDQ-xL1vkT9XGJWvP87wxP_p7UMvDsA25h8eN4rWTGVT_4Cq9ekLQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825439332</pqid></control><display><type>article</type><title>Minibrain and Wings apart control organ growth and tissue patterning through down-regulation of Capicua</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Yang, Liu ; Paul, Sayantanee ; Trieu, Kenneth G. ; Dent, Lucas G. ; Froldi, Francesca ; Forés, Marta ; Webster, Kaitlyn ; Siegfried, Kellee R. ; Kondo, Shu ; Harvey, Kieran ; Cheng, Louise ; Jiménez, Gerardo ; Shvartsman, Stanislav Y. ; Veraksa, Alexey</creator><creatorcontrib>Yang, Liu ; Paul, Sayantanee ; Trieu, Kenneth G. ; Dent, Lucas G. ; Froldi, Francesca ; Forés, Marta ; Webster, Kaitlyn ; Siegfried, Kellee R. ; Kondo, Shu ; Harvey, Kieran ; Cheng, Louise ; Jiménez, Gerardo ; Shvartsman, Stanislav Y. ; Veraksa, Alexey</creatorcontrib><description>The transcriptional repressor Capicua (Cic) controls tissue patterning and restricts organ growth, and has been recently implicated in several cancers. Cic has emerged as a primary sensor of signaling downstream of the receptor tyrosine kinase (RTK)/extracellular signal-regulated kinase (ERK) pathway, but how Cic activity is regulated in different cellular contexts remains poorly understood. We found that the kinase Minibrain (Mnb, ortholog of mammalian DYRK1A), acting through the adaptor protein Wings apart (Wap), physically interacts with and phosphorylates the Cic protein. Mnb and Wap inhibit Cic function by limiting its transcriptional repressor activity. Down-regulation of Cic by Mnb/Wap is necessary for promoting the growth of multiple organs, including the wings, eyes, and the brain, and for proper tissue patterning in the wing. We have thus uncovered a previously unknown mechanism of down-regulation of Cic activity by Mnb and Wap, which operates independently from the ERK-mediated control of Cic. Therefore, Cic functions as an integrator of upstream signals that are essential for tissue patterning and organ growth. Finally, because DYRK1A and CIC exhibit, respectively, prooncogenic vs. tumor suppressor activities in human oligodendroglioma, our results raise the possibility that DYRK1A may also down-regulate CIC in human cells.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1609417113</identifier><identifier>PMID: 27601662</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adaptor Proteins, Signal Transducing - genetics ; Animals ; Biological Sciences ; Biosensors ; Body Patterning - genetics ; Cancer ; Drosophila - genetics ; Drosophila - growth &amp; development ; Drosophila Proteins - biosynthesis ; Drosophila Proteins - genetics ; Dyrk Kinases ; Gene Expression Regulation, Developmental ; HMGB Proteins - biosynthesis ; HMGB Proteins - genetics ; Humans ; Kinases ; Neoplasms - genetics ; Phosphorylation ; Protein Serine-Threonine Kinases - biosynthesis ; Protein Serine-Threonine Kinases - genetics ; Protein-Tyrosine Kinases - genetics ; Proteins ; Repressor Proteins - biosynthesis ; Repressor Proteins - genetics ; Tissues ; Wings, Animal - growth &amp; development</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-09, Vol.113 (38), p.10583-10588</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Sep 20, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-e402cbe263664e8f24466d320561573fcbd8fb2ae3e04aaa6b22b0d10ddef6613</citedby><cites>FETCH-LOGICAL-c509t-e402cbe263664e8f24466d320561573fcbd8fb2ae3e04aaa6b22b0d10ddef6613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26471632$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26471632$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27601662$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Liu</creatorcontrib><creatorcontrib>Paul, Sayantanee</creatorcontrib><creatorcontrib>Trieu, Kenneth G.</creatorcontrib><creatorcontrib>Dent, Lucas G.</creatorcontrib><creatorcontrib>Froldi, Francesca</creatorcontrib><creatorcontrib>Forés, Marta</creatorcontrib><creatorcontrib>Webster, Kaitlyn</creatorcontrib><creatorcontrib>Siegfried, Kellee R.</creatorcontrib><creatorcontrib>Kondo, Shu</creatorcontrib><creatorcontrib>Harvey, Kieran</creatorcontrib><creatorcontrib>Cheng, Louise</creatorcontrib><creatorcontrib>Jiménez, Gerardo</creatorcontrib><creatorcontrib>Shvartsman, Stanislav Y.</creatorcontrib><creatorcontrib>Veraksa, Alexey</creatorcontrib><title>Minibrain and Wings apart control organ growth and tissue patterning through down-regulation of Capicua</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The transcriptional repressor Capicua (Cic) controls tissue patterning and restricts organ growth, and has been recently implicated in several cancers. Cic has emerged as a primary sensor of signaling downstream of the receptor tyrosine kinase (RTK)/extracellular signal-regulated kinase (ERK) pathway, but how Cic activity is regulated in different cellular contexts remains poorly understood. We found that the kinase Minibrain (Mnb, ortholog of mammalian DYRK1A), acting through the adaptor protein Wings apart (Wap), physically interacts with and phosphorylates the Cic protein. Mnb and Wap inhibit Cic function by limiting its transcriptional repressor activity. Down-regulation of Cic by Mnb/Wap is necessary for promoting the growth of multiple organs, including the wings, eyes, and the brain, and for proper tissue patterning in the wing. We have thus uncovered a previously unknown mechanism of down-regulation of Cic activity by Mnb and Wap, which operates independently from the ERK-mediated control of Cic. Therefore, Cic functions as an integrator of upstream signals that are essential for tissue patterning and organ growth. Finally, because DYRK1A and CIC exhibit, respectively, prooncogenic vs. tumor suppressor activities in human oligodendroglioma, our results raise the possibility that DYRK1A may also down-regulate CIC in human cells.</description><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Biosensors</subject><subject>Body Patterning - genetics</subject><subject>Cancer</subject><subject>Drosophila - genetics</subject><subject>Drosophila - growth &amp; development</subject><subject>Drosophila Proteins - biosynthesis</subject><subject>Drosophila Proteins - genetics</subject><subject>Dyrk Kinases</subject><subject>Gene Expression Regulation, Developmental</subject><subject>HMGB Proteins - biosynthesis</subject><subject>HMGB Proteins - genetics</subject><subject>Humans</subject><subject>Kinases</subject><subject>Neoplasms - genetics</subject><subject>Phosphorylation</subject><subject>Protein Serine-Threonine Kinases - biosynthesis</subject><subject>Protein Serine-Threonine Kinases - genetics</subject><subject>Protein-Tyrosine Kinases - genetics</subject><subject>Proteins</subject><subject>Repressor Proteins - biosynthesis</subject><subject>Repressor Proteins - genetics</subject><subject>Tissues</subject><subject>Wings, Animal - growth &amp; development</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxa0KRJfCuSeQpV64pB1_xEkulaoVX1IRl1YcrUniZL3K2qnttOK_x8uWFjjNYX7vzTw9Qk4ZnDOoxMXsMJ4zBY1kFWPiiKwYNKxQsoEXZAXAq6KWXB6T1zFuAaApa3hFjnmlgCnFV2T8Zp1tA1pH0fX0h3VjpDhjSLTzLgU_UR9GdHQM_iFtfkPJxrgYOmNKJrisoGkT_DJuaO8fXBHMuEyYrHfUD3SNs-0WfENeDjhF8_ZxnpDbTx9v1l-K6--fv66vrouuhCYVRgLvWsOVUEqaeuBSKtULDqViZSWGru3roeVohAGJiKrlvIWeQd-bQSkmTsjlwXde2p3pO5Mz4KTnYHcYfmqPVv-7cXajR3-vSxBlXVXZ4MOjQfB3i4lJ72zszDShM36JmtWc558Y7G-d_Ydu_RJcjrenSikaIXimLg5UF3yMwQxPzzDQ-xL1vkT9XGJWvP87wxP_p7UMvDsA25h8eN4rWTGVT_4Cq9ekLQ</recordid><startdate>20160920</startdate><enddate>20160920</enddate><creator>Yang, Liu</creator><creator>Paul, Sayantanee</creator><creator>Trieu, Kenneth G.</creator><creator>Dent, Lucas G.</creator><creator>Froldi, Francesca</creator><creator>Forés, Marta</creator><creator>Webster, Kaitlyn</creator><creator>Siegfried, Kellee R.</creator><creator>Kondo, Shu</creator><creator>Harvey, Kieran</creator><creator>Cheng, Louise</creator><creator>Jiménez, Gerardo</creator><creator>Shvartsman, Stanislav Y.</creator><creator>Veraksa, Alexey</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160920</creationdate><title>Minibrain and Wings apart control organ growth and tissue patterning through down-regulation of Capicua</title><author>Yang, Liu ; Paul, Sayantanee ; Trieu, Kenneth G. ; Dent, Lucas G. ; Froldi, Francesca ; Forés, Marta ; Webster, Kaitlyn ; Siegfried, Kellee R. ; Kondo, Shu ; Harvey, Kieran ; Cheng, Louise ; Jiménez, Gerardo ; Shvartsman, Stanislav Y. ; Veraksa, Alexey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-e402cbe263664e8f24466d320561573fcbd8fb2ae3e04aaa6b22b0d10ddef6613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Biosensors</topic><topic>Body Patterning - genetics</topic><topic>Cancer</topic><topic>Drosophila - genetics</topic><topic>Drosophila - growth &amp; development</topic><topic>Drosophila Proteins - biosynthesis</topic><topic>Drosophila Proteins - genetics</topic><topic>Dyrk Kinases</topic><topic>Gene Expression Regulation, Developmental</topic><topic>HMGB Proteins - biosynthesis</topic><topic>HMGB Proteins - genetics</topic><topic>Humans</topic><topic>Kinases</topic><topic>Neoplasms - genetics</topic><topic>Phosphorylation</topic><topic>Protein Serine-Threonine Kinases - biosynthesis</topic><topic>Protein Serine-Threonine Kinases - genetics</topic><topic>Protein-Tyrosine Kinases - genetics</topic><topic>Proteins</topic><topic>Repressor Proteins - biosynthesis</topic><topic>Repressor Proteins - genetics</topic><topic>Tissues</topic><topic>Wings, Animal - growth &amp; development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Liu</creatorcontrib><creatorcontrib>Paul, Sayantanee</creatorcontrib><creatorcontrib>Trieu, Kenneth G.</creatorcontrib><creatorcontrib>Dent, Lucas G.</creatorcontrib><creatorcontrib>Froldi, Francesca</creatorcontrib><creatorcontrib>Forés, Marta</creatorcontrib><creatorcontrib>Webster, Kaitlyn</creatorcontrib><creatorcontrib>Siegfried, Kellee R.</creatorcontrib><creatorcontrib>Kondo, Shu</creatorcontrib><creatorcontrib>Harvey, Kieran</creatorcontrib><creatorcontrib>Cheng, Louise</creatorcontrib><creatorcontrib>Jiménez, Gerardo</creatorcontrib><creatorcontrib>Shvartsman, Stanislav Y.</creatorcontrib><creatorcontrib>Veraksa, Alexey</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Liu</au><au>Paul, Sayantanee</au><au>Trieu, Kenneth G.</au><au>Dent, Lucas G.</au><au>Froldi, Francesca</au><au>Forés, Marta</au><au>Webster, Kaitlyn</au><au>Siegfried, Kellee R.</au><au>Kondo, Shu</au><au>Harvey, Kieran</au><au>Cheng, Louise</au><au>Jiménez, Gerardo</au><au>Shvartsman, Stanislav Y.</au><au>Veraksa, Alexey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minibrain and Wings apart control organ growth and tissue patterning through down-regulation of Capicua</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-09-20</date><risdate>2016</risdate><volume>113</volume><issue>38</issue><spage>10583</spage><epage>10588</epage><pages>10583-10588</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The transcriptional repressor Capicua (Cic) controls tissue patterning and restricts organ growth, and has been recently implicated in several cancers. Cic has emerged as a primary sensor of signaling downstream of the receptor tyrosine kinase (RTK)/extracellular signal-regulated kinase (ERK) pathway, but how Cic activity is regulated in different cellular contexts remains poorly understood. We found that the kinase Minibrain (Mnb, ortholog of mammalian DYRK1A), acting through the adaptor protein Wings apart (Wap), physically interacts with and phosphorylates the Cic protein. Mnb and Wap inhibit Cic function by limiting its transcriptional repressor activity. Down-regulation of Cic by Mnb/Wap is necessary for promoting the growth of multiple organs, including the wings, eyes, and the brain, and for proper tissue patterning in the wing. We have thus uncovered a previously unknown mechanism of down-regulation of Cic activity by Mnb and Wap, which operates independently from the ERK-mediated control of Cic. Therefore, Cic functions as an integrator of upstream signals that are essential for tissue patterning and organ growth. Finally, because DYRK1A and CIC exhibit, respectively, prooncogenic vs. tumor suppressor activities in human oligodendroglioma, our results raise the possibility that DYRK1A may also down-regulate CIC in human cells.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>27601662</pmid><doi>10.1073/pnas.1609417113</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2016-09, Vol.113 (38), p.10583-10588
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5035877
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adaptor Proteins, Signal Transducing - genetics
Animals
Biological Sciences
Biosensors
Body Patterning - genetics
Cancer
Drosophila - genetics
Drosophila - growth & development
Drosophila Proteins - biosynthesis
Drosophila Proteins - genetics
Dyrk Kinases
Gene Expression Regulation, Developmental
HMGB Proteins - biosynthesis
HMGB Proteins - genetics
Humans
Kinases
Neoplasms - genetics
Phosphorylation
Protein Serine-Threonine Kinases - biosynthesis
Protein Serine-Threonine Kinases - genetics
Protein-Tyrosine Kinases - genetics
Proteins
Repressor Proteins - biosynthesis
Repressor Proteins - genetics
Tissues
Wings, Animal - growth & development
title Minibrain and Wings apart control organ growth and tissue patterning through down-regulation of Capicua
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A48%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minibrain%20and%20Wings%20apart%20control%20organ%20growth%20and%20tissue%20patterning%20through%20down-regulation%20of%20Capicua&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Yang,%20Liu&rft.date=2016-09-20&rft.volume=113&rft.issue=38&rft.spage=10583&rft.epage=10588&rft.pages=10583-10588&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1609417113&rft_dat=%3Cjstor_pubme%3E26471632%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825439332&rft_id=info:pmid/27601662&rft_jstor_id=26471632&rfr_iscdi=true