Broadband high-efficiency dielectric metasurfaces for the visible spectrum

Metasurfaces are planar optical elements that hold promise for overcoming the limitations of refractive and conventional diffractive optics. Original dielectric metasurfaces are limited to transparency windows at infrared wavelengths because of significant optical absorption and loss at visible wave...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2016-09, Vol.113 (38), p.10473-10478
Hauptverfasser: Devlin, Robert C., Khorasaninejad, Mohammadreza, Chen, Wei Ting, Oh, Jaewon, Capasso, Federico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10478
container_issue 38
container_start_page 10473
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 113
creator Devlin, Robert C.
Khorasaninejad, Mohammadreza
Chen, Wei Ting
Oh, Jaewon
Capasso, Federico
description Metasurfaces are planar optical elements that hold promise for overcoming the limitations of refractive and conventional diffractive optics. Original dielectric metasurfaces are limited to transparency windows at infrared wavelengths because of significant optical absorption and loss at visible wavelengths. Thus, it is critical that new materials and nanofabrication techniques be developed to extend dielectric metasurfaces across the visible spectrum and to enable applications such as high numerical aperture lenses, color holograms, and wearable optics. Here, we demonstrate high performance dielectric metasurfaces in the form of holograms for red, green, and blue wavelengths with record absolute efficiency (>78%). We use atomic layer deposition of amorphous titanium dioxide with surface roughness less than 1 nmand negligible optical loss. We use a process for fabricating dielectric metasurfaces that allows us to produce anisotropic, subwavelength-spaced dielectric nanostructures with shape birefringence. This process is capable of realizing any high-efficiency metasurface optical element, e.g., metalenses and axicons.
doi_str_mv 10.1073/pnas.1611740113
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5035844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26471613</jstor_id><sourcerecordid>26471613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-690ea31ee802417920e2c382f7445ebfc7c35fbc12d0392af47f59cfaf3cd2d63</originalsourceid><addsrcrecordid>eNpd0U1P3DAQBmCrApVl23NPrSJx6SXs-CN2fEECVFoQEhd6thxnzHqVxFs7QeLfk9VSaDn5MM-88ugl5AuFUwqKr7aDzadUUqoEUMo_kAUFTUspNByQBQBTZS2YOCLHOW8AQFc1fCRHTEmgkosFublI0baNHdpiHR7WJXofXMDBPRVtwA7dmIIrehxtnpK3DnPhYyrGNRaPIYemwyJvd2rqP5FDb7uMn1_eJfl99eP-8ld5e_fz-vL8tnQV6LGUGtByilgDE1RpBsgcr5lXQlTYeKccr3zjKGuBa2a9UL7SzlvPXctayZfkbJ-7nZoeW4fDmGxntin0Nj2ZaIP5fzKEtXmIj6YCXtVCzAHfXwJS_DNhHk0fssOuswPGKRtaMyakFIzP9OQd3cQpDfN5O1UJXutaz2q1Vy7FnBP6189QMLuezK4n89bTvPHt3xte_d9iZvB1DzZ5jOltLoWaYzh_BuZhmXk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825438989</pqid></control><display><type>article</type><title>Broadband high-efficiency dielectric metasurfaces for the visible spectrum</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Devlin, Robert C. ; Khorasaninejad, Mohammadreza ; Chen, Wei Ting ; Oh, Jaewon ; Capasso, Federico</creator><creatorcontrib>Devlin, Robert C. ; Khorasaninejad, Mohammadreza ; Chen, Wei Ting ; Oh, Jaewon ; Capasso, Federico</creatorcontrib><description>Metasurfaces are planar optical elements that hold promise for overcoming the limitations of refractive and conventional diffractive optics. Original dielectric metasurfaces are limited to transparency windows at infrared wavelengths because of significant optical absorption and loss at visible wavelengths. Thus, it is critical that new materials and nanofabrication techniques be developed to extend dielectric metasurfaces across the visible spectrum and to enable applications such as high numerical aperture lenses, color holograms, and wearable optics. Here, we demonstrate high performance dielectric metasurfaces in the form of holograms for red, green, and blue wavelengths with record absolute efficiency (&gt;78%). We use atomic layer deposition of amorphous titanium dioxide with surface roughness less than 1 nmand negligible optical loss. We use a process for fabricating dielectric metasurfaces that allows us to produce anisotropic, subwavelength-spaced dielectric nanostructures with shape birefringence. This process is capable of realizing any high-efficiency metasurface optical element, e.g., metalenses and axicons.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1611740113</identifier><identifier>PMID: 27601634</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Anisotropy ; Broadband ; Dielectric properties ; Holography ; Optics ; Physical Sciences ; Spectrum analysis ; Surface roughness</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-09, Vol.113 (38), p.10473-10478</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Sep 20, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-690ea31ee802417920e2c382f7445ebfc7c35fbc12d0392af47f59cfaf3cd2d63</citedby><cites>FETCH-LOGICAL-c509t-690ea31ee802417920e2c382f7445ebfc7c35fbc12d0392af47f59cfaf3cd2d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26471613$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26471613$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,729,782,786,805,887,27931,27932,53798,53800,58024,58257</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27601634$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Devlin, Robert C.</creatorcontrib><creatorcontrib>Khorasaninejad, Mohammadreza</creatorcontrib><creatorcontrib>Chen, Wei Ting</creatorcontrib><creatorcontrib>Oh, Jaewon</creatorcontrib><creatorcontrib>Capasso, Federico</creatorcontrib><title>Broadband high-efficiency dielectric metasurfaces for the visible spectrum</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Metasurfaces are planar optical elements that hold promise for overcoming the limitations of refractive and conventional diffractive optics. Original dielectric metasurfaces are limited to transparency windows at infrared wavelengths because of significant optical absorption and loss at visible wavelengths. Thus, it is critical that new materials and nanofabrication techniques be developed to extend dielectric metasurfaces across the visible spectrum and to enable applications such as high numerical aperture lenses, color holograms, and wearable optics. Here, we demonstrate high performance dielectric metasurfaces in the form of holograms for red, green, and blue wavelengths with record absolute efficiency (&gt;78%). We use atomic layer deposition of amorphous titanium dioxide with surface roughness less than 1 nmand negligible optical loss. We use a process for fabricating dielectric metasurfaces that allows us to produce anisotropic, subwavelength-spaced dielectric nanostructures with shape birefringence. This process is capable of realizing any high-efficiency metasurface optical element, e.g., metalenses and axicons.</description><subject>Anisotropy</subject><subject>Broadband</subject><subject>Dielectric properties</subject><subject>Holography</subject><subject>Optics</subject><subject>Physical Sciences</subject><subject>Spectrum analysis</subject><subject>Surface roughness</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpd0U1P3DAQBmCrApVl23NPrSJx6SXs-CN2fEECVFoQEhd6thxnzHqVxFs7QeLfk9VSaDn5MM-88ugl5AuFUwqKr7aDzadUUqoEUMo_kAUFTUspNByQBQBTZS2YOCLHOW8AQFc1fCRHTEmgkosFublI0baNHdpiHR7WJXofXMDBPRVtwA7dmIIrehxtnpK3DnPhYyrGNRaPIYemwyJvd2rqP5FDb7uMn1_eJfl99eP-8ld5e_fz-vL8tnQV6LGUGtByilgDE1RpBsgcr5lXQlTYeKccr3zjKGuBa2a9UL7SzlvPXctayZfkbJ-7nZoeW4fDmGxntin0Nj2ZaIP5fzKEtXmIj6YCXtVCzAHfXwJS_DNhHk0fssOuswPGKRtaMyakFIzP9OQd3cQpDfN5O1UJXutaz2q1Vy7FnBP6189QMLuezK4n89bTvPHt3xte_d9iZvB1DzZ5jOltLoWaYzh_BuZhmXk</recordid><startdate>20160920</startdate><enddate>20160920</enddate><creator>Devlin, Robert C.</creator><creator>Khorasaninejad, Mohammadreza</creator><creator>Chen, Wei Ting</creator><creator>Oh, Jaewon</creator><creator>Capasso, Federico</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160920</creationdate><title>Broadband high-efficiency dielectric metasurfaces for the visible spectrum</title><author>Devlin, Robert C. ; Khorasaninejad, Mohammadreza ; Chen, Wei Ting ; Oh, Jaewon ; Capasso, Federico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-690ea31ee802417920e2c382f7445ebfc7c35fbc12d0392af47f59cfaf3cd2d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anisotropy</topic><topic>Broadband</topic><topic>Dielectric properties</topic><topic>Holography</topic><topic>Optics</topic><topic>Physical Sciences</topic><topic>Spectrum analysis</topic><topic>Surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devlin, Robert C.</creatorcontrib><creatorcontrib>Khorasaninejad, Mohammadreza</creatorcontrib><creatorcontrib>Chen, Wei Ting</creatorcontrib><creatorcontrib>Oh, Jaewon</creatorcontrib><creatorcontrib>Capasso, Federico</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devlin, Robert C.</au><au>Khorasaninejad, Mohammadreza</au><au>Chen, Wei Ting</au><au>Oh, Jaewon</au><au>Capasso, Federico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broadband high-efficiency dielectric metasurfaces for the visible spectrum</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-09-20</date><risdate>2016</risdate><volume>113</volume><issue>38</issue><spage>10473</spage><epage>10478</epage><pages>10473-10478</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Metasurfaces are planar optical elements that hold promise for overcoming the limitations of refractive and conventional diffractive optics. Original dielectric metasurfaces are limited to transparency windows at infrared wavelengths because of significant optical absorption and loss at visible wavelengths. Thus, it is critical that new materials and nanofabrication techniques be developed to extend dielectric metasurfaces across the visible spectrum and to enable applications such as high numerical aperture lenses, color holograms, and wearable optics. Here, we demonstrate high performance dielectric metasurfaces in the form of holograms for red, green, and blue wavelengths with record absolute efficiency (&gt;78%). We use atomic layer deposition of amorphous titanium dioxide with surface roughness less than 1 nmand negligible optical loss. We use a process for fabricating dielectric metasurfaces that allows us to produce anisotropic, subwavelength-spaced dielectric nanostructures with shape birefringence. This process is capable of realizing any high-efficiency metasurface optical element, e.g., metalenses and axicons.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>27601634</pmid><doi>10.1073/pnas.1611740113</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2016-09, Vol.113 (38), p.10473-10478
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5035844
source JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Anisotropy
Broadband
Dielectric properties
Holography
Optics
Physical Sciences
Spectrum analysis
Surface roughness
title Broadband high-efficiency dielectric metasurfaces for the visible spectrum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T21%3A07%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broadband%20high-efficiency%20dielectric%20metasurfaces%20for%20the%20visible%20spectrum&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Devlin,%20Robert%20C.&rft.date=2016-09-20&rft.volume=113&rft.issue=38&rft.spage=10473&rft.epage=10478&rft.pages=10473-10478&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1611740113&rft_dat=%3Cjstor_pubme%3E26471613%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825438989&rft_id=info:pmid/27601634&rft_jstor_id=26471613&rfr_iscdi=true