Non-invasive Presymptomatic Detection of Cercospora beticola Infection and Identification of Early Metabolic Responses in Sugar Beet

is an economically significant fungal pathogen of sugar beet, and is the causative pathogen of leaf spot. Selected host genotypes with contrasting degree of susceptibility to the disease have been exploited to characterize the patterns of metabolite responses to fungal infection, and to devise a pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in plant science 2016-09, Vol.7, p.1377-1377
Hauptverfasser: Arens, Nadja, Backhaus, Andreas, Döll, Stefanie, Fischer, Sandra, Seiffert, Udo, Mock, Hans-Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1377
container_issue
container_start_page 1377
container_title Frontiers in plant science
container_volume 7
creator Arens, Nadja
Backhaus, Andreas
Döll, Stefanie
Fischer, Sandra
Seiffert, Udo
Mock, Hans-Peter
description is an economically significant fungal pathogen of sugar beet, and is the causative pathogen of leaf spot. Selected host genotypes with contrasting degree of susceptibility to the disease have been exploited to characterize the patterns of metabolite responses to fungal infection, and to devise a pre-symptomatic, non-invasive method of detecting the presence of the pathogen. Sugar beet genotypes were analyzed for metabolite profiles and hyperspectral signatures. Correlation of data matrices from both approaches facilitated identification of candidates for metabolic markers. Hyperspectral imaging was highly predictive with a classification accuracy of 98.5-99.9% in detecting . Metabolite analysis revealed metabolites altered by the host as part of a successful defense response: these were L-DOPA, 12-hydroxyjasmonic acid 12- -β-D-glucoside, pantothenic acid, and 5- -feruloylquinic acid. The accumulation of glucosylvitexin in the resistant cultivar suggests it acts as a constitutively produced protectant. The study establishes a proof-of-concept for an unbiased, presymptomatic and non-invasive detection system for the presence of . The test needs to be validated with a larger set of genotypes, to be scalable to the level of a crop improvement program, aiming to speed up the selection for resistant cultivars of sugar beet. Untargeted metabolic profiling is a valuable tool to identify metabolites which correlate with hyperspectral data.
doi_str_mv 10.3389/fpls.2016.01377
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5031787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835387601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-6101e3c5495a11f63756d9fe6094acb0d664ab86dd4229e09f25fdf87b96c8a93</originalsourceid><addsrcrecordid>eNpVkc1v3CAQxVHVqom2OfdWcezFGzA2mEuldps2K6UfahIpN4TxkFLZ4AC70t77h5dNNlHKZZDmvTcz-iH0lpIlY508tfOYljWhfEkoE-IFOqacN1XD65uXz_5H6CSlP6S8lhApxWt0VAtRHC05Rn-_B185v9XJbQH_jJB205zDpLMz-DNkMNkFj4PFK4gmpDlEjXso3TBqvPb2INB-wOsBfHbWGf3oOdNx3OFvkHUfxhL4C0qAT5Cw8_hyc6sj_gSQ36BXVo8JTg51ga6_nF2tzquLH1_Xq48XlWGS5YpTQoGZtpGtptTycgEfpAVOZKNNT4Zyse47PgxNXUsg0tatHWwneslNpyVboA8PufOmn2AwZd2oRzVHN-m4U0E79X_Hu9_qNmxVSxgVnSgB7w8BMdxtIGU1uWRgHLWHsEmKdqxlneCFxwKdPkhNDClFsE9jKFF7fGqPT-3xqXt8xfHu-XZP-kdY7B_OSZo9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835387601</pqid></control><display><type>article</type><title>Non-invasive Presymptomatic Detection of Cercospora beticola Infection and Identification of Early Metabolic Responses in Sugar Beet</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Arens, Nadja ; Backhaus, Andreas ; Döll, Stefanie ; Fischer, Sandra ; Seiffert, Udo ; Mock, Hans-Peter</creator><creatorcontrib>Arens, Nadja ; Backhaus, Andreas ; Döll, Stefanie ; Fischer, Sandra ; Seiffert, Udo ; Mock, Hans-Peter</creatorcontrib><description>is an economically significant fungal pathogen of sugar beet, and is the causative pathogen of leaf spot. Selected host genotypes with contrasting degree of susceptibility to the disease have been exploited to characterize the patterns of metabolite responses to fungal infection, and to devise a pre-symptomatic, non-invasive method of detecting the presence of the pathogen. Sugar beet genotypes were analyzed for metabolite profiles and hyperspectral signatures. Correlation of data matrices from both approaches facilitated identification of candidates for metabolic markers. Hyperspectral imaging was highly predictive with a classification accuracy of 98.5-99.9% in detecting . Metabolite analysis revealed metabolites altered by the host as part of a successful defense response: these were L-DOPA, 12-hydroxyjasmonic acid 12- -β-D-glucoside, pantothenic acid, and 5- -feruloylquinic acid. The accumulation of glucosylvitexin in the resistant cultivar suggests it acts as a constitutively produced protectant. The study establishes a proof-of-concept for an unbiased, presymptomatic and non-invasive detection system for the presence of . The test needs to be validated with a larger set of genotypes, to be scalable to the level of a crop improvement program, aiming to speed up the selection for resistant cultivars of sugar beet. Untargeted metabolic profiling is a valuable tool to identify metabolites which correlate with hyperspectral data.</description><identifier>ISSN: 1664-462X</identifier><identifier>EISSN: 1664-462X</identifier><identifier>DOI: 10.3389/fpls.2016.01377</identifier><identifier>PMID: 27713750</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>Plant Science</subject><ispartof>Frontiers in plant science, 2016-09, Vol.7, p.1377-1377</ispartof><rights>Copyright © 2016 Arens, Backhaus, Döll, Fischer, Seiffert and Mock. 2016 Arens, Backhaus, Döll, Fischer, Seiffert and Mock</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-6101e3c5495a11f63756d9fe6094acb0d664ab86dd4229e09f25fdf87b96c8a93</citedby><cites>FETCH-LOGICAL-c393t-6101e3c5495a11f63756d9fe6094acb0d664ab86dd4229e09f25fdf87b96c8a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031787/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031787/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27713750$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arens, Nadja</creatorcontrib><creatorcontrib>Backhaus, Andreas</creatorcontrib><creatorcontrib>Döll, Stefanie</creatorcontrib><creatorcontrib>Fischer, Sandra</creatorcontrib><creatorcontrib>Seiffert, Udo</creatorcontrib><creatorcontrib>Mock, Hans-Peter</creatorcontrib><title>Non-invasive Presymptomatic Detection of Cercospora beticola Infection and Identification of Early Metabolic Responses in Sugar Beet</title><title>Frontiers in plant science</title><addtitle>Front Plant Sci</addtitle><description>is an economically significant fungal pathogen of sugar beet, and is the causative pathogen of leaf spot. Selected host genotypes with contrasting degree of susceptibility to the disease have been exploited to characterize the patterns of metabolite responses to fungal infection, and to devise a pre-symptomatic, non-invasive method of detecting the presence of the pathogen. Sugar beet genotypes were analyzed for metabolite profiles and hyperspectral signatures. Correlation of data matrices from both approaches facilitated identification of candidates for metabolic markers. Hyperspectral imaging was highly predictive with a classification accuracy of 98.5-99.9% in detecting . Metabolite analysis revealed metabolites altered by the host as part of a successful defense response: these were L-DOPA, 12-hydroxyjasmonic acid 12- -β-D-glucoside, pantothenic acid, and 5- -feruloylquinic acid. The accumulation of glucosylvitexin in the resistant cultivar suggests it acts as a constitutively produced protectant. The study establishes a proof-of-concept for an unbiased, presymptomatic and non-invasive detection system for the presence of . The test needs to be validated with a larger set of genotypes, to be scalable to the level of a crop improvement program, aiming to speed up the selection for resistant cultivars of sugar beet. Untargeted metabolic profiling is a valuable tool to identify metabolites which correlate with hyperspectral data.</description><subject>Plant Science</subject><issn>1664-462X</issn><issn>1664-462X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpVkc1v3CAQxVHVqom2OfdWcezFGzA2mEuldps2K6UfahIpN4TxkFLZ4AC70t77h5dNNlHKZZDmvTcz-iH0lpIlY508tfOYljWhfEkoE-IFOqacN1XD65uXz_5H6CSlP6S8lhApxWt0VAtRHC05Rn-_B185v9XJbQH_jJB205zDpLMz-DNkMNkFj4PFK4gmpDlEjXso3TBqvPb2INB-wOsBfHbWGf3oOdNx3OFvkHUfxhL4C0qAT5Cw8_hyc6sj_gSQ36BXVo8JTg51ga6_nF2tzquLH1_Xq48XlWGS5YpTQoGZtpGtptTycgEfpAVOZKNNT4Zyse47PgxNXUsg0tatHWwneslNpyVboA8PufOmn2AwZd2oRzVHN-m4U0E79X_Hu9_qNmxVSxgVnSgB7w8BMdxtIGU1uWRgHLWHsEmKdqxlneCFxwKdPkhNDClFsE9jKFF7fGqPT-3xqXt8xfHu-XZP-kdY7B_OSZo9</recordid><startdate>20160922</startdate><enddate>20160922</enddate><creator>Arens, Nadja</creator><creator>Backhaus, Andreas</creator><creator>Döll, Stefanie</creator><creator>Fischer, Sandra</creator><creator>Seiffert, Udo</creator><creator>Mock, Hans-Peter</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160922</creationdate><title>Non-invasive Presymptomatic Detection of Cercospora beticola Infection and Identification of Early Metabolic Responses in Sugar Beet</title><author>Arens, Nadja ; Backhaus, Andreas ; Döll, Stefanie ; Fischer, Sandra ; Seiffert, Udo ; Mock, Hans-Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-6101e3c5495a11f63756d9fe6094acb0d664ab86dd4229e09f25fdf87b96c8a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Plant Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arens, Nadja</creatorcontrib><creatorcontrib>Backhaus, Andreas</creatorcontrib><creatorcontrib>Döll, Stefanie</creatorcontrib><creatorcontrib>Fischer, Sandra</creatorcontrib><creatorcontrib>Seiffert, Udo</creatorcontrib><creatorcontrib>Mock, Hans-Peter</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Frontiers in plant science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arens, Nadja</au><au>Backhaus, Andreas</au><au>Döll, Stefanie</au><au>Fischer, Sandra</au><au>Seiffert, Udo</au><au>Mock, Hans-Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-invasive Presymptomatic Detection of Cercospora beticola Infection and Identification of Early Metabolic Responses in Sugar Beet</atitle><jtitle>Frontiers in plant science</jtitle><addtitle>Front Plant Sci</addtitle><date>2016-09-22</date><risdate>2016</risdate><volume>7</volume><spage>1377</spage><epage>1377</epage><pages>1377-1377</pages><issn>1664-462X</issn><eissn>1664-462X</eissn><abstract>is an economically significant fungal pathogen of sugar beet, and is the causative pathogen of leaf spot. Selected host genotypes with contrasting degree of susceptibility to the disease have been exploited to characterize the patterns of metabolite responses to fungal infection, and to devise a pre-symptomatic, non-invasive method of detecting the presence of the pathogen. Sugar beet genotypes were analyzed for metabolite profiles and hyperspectral signatures. Correlation of data matrices from both approaches facilitated identification of candidates for metabolic markers. Hyperspectral imaging was highly predictive with a classification accuracy of 98.5-99.9% in detecting . Metabolite analysis revealed metabolites altered by the host as part of a successful defense response: these were L-DOPA, 12-hydroxyjasmonic acid 12- -β-D-glucoside, pantothenic acid, and 5- -feruloylquinic acid. The accumulation of glucosylvitexin in the resistant cultivar suggests it acts as a constitutively produced protectant. The study establishes a proof-of-concept for an unbiased, presymptomatic and non-invasive detection system for the presence of . The test needs to be validated with a larger set of genotypes, to be scalable to the level of a crop improvement program, aiming to speed up the selection for resistant cultivars of sugar beet. Untargeted metabolic profiling is a valuable tool to identify metabolites which correlate with hyperspectral data.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>27713750</pmid><doi>10.3389/fpls.2016.01377</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1664-462X
ispartof Frontiers in plant science, 2016-09, Vol.7, p.1377-1377
issn 1664-462X
1664-462X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5031787
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Plant Science
title Non-invasive Presymptomatic Detection of Cercospora beticola Infection and Identification of Early Metabolic Responses in Sugar Beet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A21%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-invasive%20Presymptomatic%20Detection%20of%20Cercospora%20beticola%20Infection%20and%20Identification%20of%20Early%20Metabolic%20Responses%20in%20Sugar%20Beet&rft.jtitle=Frontiers%20in%20plant%20science&rft.au=Arens,%20Nadja&rft.date=2016-09-22&rft.volume=7&rft.spage=1377&rft.epage=1377&rft.pages=1377-1377&rft.issn=1664-462X&rft.eissn=1664-462X&rft_id=info:doi/10.3389/fpls.2016.01377&rft_dat=%3Cproquest_pubme%3E1835387601%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835387601&rft_id=info:pmid/27713750&rfr_iscdi=true