SPATA2 Links CYLD to LUBAC, Activates CYLD, and Controls LUBAC Signaling
The linear ubiquitin chain assembly complex (LUBAC) regulates immune signaling, and its function is regulated by the deubiquitinases OTULIN and CYLD, which associate with the catalytic subunit HOIP. However, the mechanism through which CYLD interacts with HOIP is unclear. We here show that CYLD inte...
Gespeichert in:
Veröffentlicht in: | Molecular cell 2016-09, Vol.63 (6), p.990-1005 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1005 |
---|---|
container_issue | 6 |
container_start_page | 990 |
container_title | Molecular cell |
container_volume | 63 |
creator | Elliott, Paul R. Leske, Derek Hrdinka, Matous Bagola, Katrin Fiil, Berthe K. McLaughlin, Stephen H. Wagstaff, Jane Volkmar, Norbert Christianson, John C. Kessler, Benedikt M. Freund, Stefan M.V. Komander, David Gyrd-Hansen, Mads |
description | The linear ubiquitin chain assembly complex (LUBAC) regulates immune signaling, and its function is regulated by the deubiquitinases OTULIN and CYLD, which associate with the catalytic subunit HOIP. However, the mechanism through which CYLD interacts with HOIP is unclear. We here show that CYLD interacts with HOIP via spermatogenesis-associated protein 2 (SPATA2). SPATA2 interacts with CYLD through its non-canonical PUB domain, which binds the catalytic CYLD USP domain in a CYLD B-box-dependent manner. Significantly, SPATA2 binding activates CYLD-mediated hydrolysis of ubiquitin chains. SPATA2 also harbors a conserved PUB-interacting motif that selectively docks into the HOIP PUB domain. In cells, SPATA2 is recruited to the TNF receptor 1 signaling complex and is required for CYLD recruitment. Loss of SPATA2 increases ubiquitination of LUBAC substrates and results in enhanced NOD2 signaling. Our data reveal SPATA2 as a high-affinity binding partner of CYLD and HOIP, and a regulatory component of LUBAC-mediated NF-κB signaling.
[Display omitted]
•CYLD recruitment to LUBAC and the TNF receptor 1 complex is mediated by SPATA2•SPATA2 forms a high-affinity complex with CYLD and stimulates CYLD’s activity•SPATA2, like OTULIN, uses a conserved PIM to dock to the HOIP PUB domain•SPATA2 limits ubiquitination of LUBAC substrates to regulate inflammatory signaling
Elliott et al. show that SPATA2 bridges CYLD with LUBAC to regulate substrate ubiquitination and inflammatory signaling. Structural and biochemical work defines SPATA2-CYLD and SPATA2-HOIP interfaces, reveals SPATA2-mediated CYLD activation, and provides first insights into stoichiometry of LUBAC complexes. |
doi_str_mv | 10.1016/j.molcel.2016.08.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5031558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276516304154</els_id><sourcerecordid>1820601244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-f88fdd23ed14b3fdc2d936c044f8f13b7c8a3d8ab726fa11f46707eb479e7ba93</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0E6vc_qFCOHLph7Di2c6kUQj-QIoHU9tCT5fhj6202LnF2Jf59XWVb4AKn8WieeT0zL0KnGHIMmH1e5evQa9vnJGU5iBwAv0MHGCq-oJjR97s34azcR4cxrhJAS1HtoX3CywoDrQ7Q9c2P-rYmWeuHx5g19-3XbApZe_elbs6yWk9-qyY7F84yNZisCcM0hj7OTHbjl4Pq_bA8Rh-c6qM92cUjdHd5cdtcL9rvV9-aul3okpFp4YRwxpDCGky7whlNTFUwDZQ64XDRcS1UYYTqOGFOYewo48BtR3lleaeq4gidz7pPm25tjbZpHNXLp9Gv1fhLBuXl35XBP8hl2MoSClyWIgl82gmM4efGxkmufUx37NVgwyZKAgAEGKPkvygWCQRMKE0onVE9hhhH694mwiBf_JIrOfslX_ySIGSyI7V9_HObt6ZXg36va9NNt96OMmpvB22NH62epAn-3z88A40gpgE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1820601244</pqid></control><display><type>article</type><title>SPATA2 Links CYLD to LUBAC, Activates CYLD, and Controls LUBAC Signaling</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Elliott, Paul R. ; Leske, Derek ; Hrdinka, Matous ; Bagola, Katrin ; Fiil, Berthe K. ; McLaughlin, Stephen H. ; Wagstaff, Jane ; Volkmar, Norbert ; Christianson, John C. ; Kessler, Benedikt M. ; Freund, Stefan M.V. ; Komander, David ; Gyrd-Hansen, Mads</creator><creatorcontrib>Elliott, Paul R. ; Leske, Derek ; Hrdinka, Matous ; Bagola, Katrin ; Fiil, Berthe K. ; McLaughlin, Stephen H. ; Wagstaff, Jane ; Volkmar, Norbert ; Christianson, John C. ; Kessler, Benedikt M. ; Freund, Stefan M.V. ; Komander, David ; Gyrd-Hansen, Mads</creatorcontrib><description>The linear ubiquitin chain assembly complex (LUBAC) regulates immune signaling, and its function is regulated by the deubiquitinases OTULIN and CYLD, which associate with the catalytic subunit HOIP. However, the mechanism through which CYLD interacts with HOIP is unclear. We here show that CYLD interacts with HOIP via spermatogenesis-associated protein 2 (SPATA2). SPATA2 interacts with CYLD through its non-canonical PUB domain, which binds the catalytic CYLD USP domain in a CYLD B-box-dependent manner. Significantly, SPATA2 binding activates CYLD-mediated hydrolysis of ubiquitin chains. SPATA2 also harbors a conserved PUB-interacting motif that selectively docks into the HOIP PUB domain. In cells, SPATA2 is recruited to the TNF receptor 1 signaling complex and is required for CYLD recruitment. Loss of SPATA2 increases ubiquitination of LUBAC substrates and results in enhanced NOD2 signaling. Our data reveal SPATA2 as a high-affinity binding partner of CYLD and HOIP, and a regulatory component of LUBAC-mediated NF-κB signaling.
[Display omitted]
•CYLD recruitment to LUBAC and the TNF receptor 1 complex is mediated by SPATA2•SPATA2 forms a high-affinity complex with CYLD and stimulates CYLD’s activity•SPATA2, like OTULIN, uses a conserved PIM to dock to the HOIP PUB domain•SPATA2 limits ubiquitination of LUBAC substrates to regulate inflammatory signaling
Elliott et al. show that SPATA2 bridges CYLD with LUBAC to regulate substrate ubiquitination and inflammatory signaling. Structural and biochemical work defines SPATA2-CYLD and SPATA2-HOIP interfaces, reveals SPATA2-mediated CYLD activation, and provides first insights into stoichiometry of LUBAC complexes.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2016.08.001</identifier><identifier>PMID: 27591049</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Binding Sites ; Cloning, Molecular ; Crystallography, X-Ray ; Deubiquitinating Enzyme CYLD ; Endopeptidases - chemistry ; Endopeptidases - genetics ; Endopeptidases - immunology ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Gene Expression ; Gene Expression Regulation ; Humans ; hydrolysis ; Immunity, Innate ; intracellular signaling peptides and proteins ; Kinetics ; Molecular Docking Simulation ; NF-kappa B - chemistry ; NF-kappa B - genetics ; NF-kappa B - immunology ; Nod2 Signaling Adaptor Protein - chemistry ; Nod2 Signaling Adaptor Protein - genetics ; Nod2 Signaling Adaptor Protein - immunology ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein Structure, Secondary ; protein subunits ; Proteins - chemistry ; Proteins - genetics ; Proteins - immunology ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - immunology ; Sequence Alignment ; Sequence Homology, Amino Acid ; Signal Transduction ; Substrate Specificity ; transcription factor NF-kappa B ; tumor necrosis factors ; Tumor Suppressor Proteins - chemistry ; Tumor Suppressor Proteins - genetics ; Tumor Suppressor Proteins - immunology ; ubiquitin ; Ubiquitin - chemistry ; Ubiquitin - genetics ; Ubiquitin - immunology ; Ubiquitin-Protein Ligases - chemistry ; Ubiquitin-Protein Ligases - genetics ; Ubiquitin-Protein Ligases - immunology ; ubiquitination</subject><ispartof>Molecular cell, 2016-09, Vol.63 (6), p.990-1005</ispartof><rights>2016 The Authors</rights><rights>Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2016 The Authors 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-f88fdd23ed14b3fdc2d936c044f8f13b7c8a3d8ab726fa11f46707eb479e7ba93</citedby><cites>FETCH-LOGICAL-c562t-f88fdd23ed14b3fdc2d936c044f8f13b7c8a3d8ab726fa11f46707eb479e7ba93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1097276516304154$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27591049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Elliott, Paul R.</creatorcontrib><creatorcontrib>Leske, Derek</creatorcontrib><creatorcontrib>Hrdinka, Matous</creatorcontrib><creatorcontrib>Bagola, Katrin</creatorcontrib><creatorcontrib>Fiil, Berthe K.</creatorcontrib><creatorcontrib>McLaughlin, Stephen H.</creatorcontrib><creatorcontrib>Wagstaff, Jane</creatorcontrib><creatorcontrib>Volkmar, Norbert</creatorcontrib><creatorcontrib>Christianson, John C.</creatorcontrib><creatorcontrib>Kessler, Benedikt M.</creatorcontrib><creatorcontrib>Freund, Stefan M.V.</creatorcontrib><creatorcontrib>Komander, David</creatorcontrib><creatorcontrib>Gyrd-Hansen, Mads</creatorcontrib><title>SPATA2 Links CYLD to LUBAC, Activates CYLD, and Controls LUBAC Signaling</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>The linear ubiquitin chain assembly complex (LUBAC) regulates immune signaling, and its function is regulated by the deubiquitinases OTULIN and CYLD, which associate with the catalytic subunit HOIP. However, the mechanism through which CYLD interacts with HOIP is unclear. We here show that CYLD interacts with HOIP via spermatogenesis-associated protein 2 (SPATA2). SPATA2 interacts with CYLD through its non-canonical PUB domain, which binds the catalytic CYLD USP domain in a CYLD B-box-dependent manner. Significantly, SPATA2 binding activates CYLD-mediated hydrolysis of ubiquitin chains. SPATA2 also harbors a conserved PUB-interacting motif that selectively docks into the HOIP PUB domain. In cells, SPATA2 is recruited to the TNF receptor 1 signaling complex and is required for CYLD recruitment. Loss of SPATA2 increases ubiquitination of LUBAC substrates and results in enhanced NOD2 signaling. Our data reveal SPATA2 as a high-affinity binding partner of CYLD and HOIP, and a regulatory component of LUBAC-mediated NF-κB signaling.
[Display omitted]
•CYLD recruitment to LUBAC and the TNF receptor 1 complex is mediated by SPATA2•SPATA2 forms a high-affinity complex with CYLD and stimulates CYLD’s activity•SPATA2, like OTULIN, uses a conserved PIM to dock to the HOIP PUB domain•SPATA2 limits ubiquitination of LUBAC substrates to regulate inflammatory signaling
Elliott et al. show that SPATA2 bridges CYLD with LUBAC to regulate substrate ubiquitination and inflammatory signaling. Structural and biochemical work defines SPATA2-CYLD and SPATA2-HOIP interfaces, reveals SPATA2-mediated CYLD activation, and provides first insights into stoichiometry of LUBAC complexes.</description><subject>Amino Acid Sequence</subject><subject>Binding Sites</subject><subject>Cloning, Molecular</subject><subject>Crystallography, X-Ray</subject><subject>Deubiquitinating Enzyme CYLD</subject><subject>Endopeptidases - chemistry</subject><subject>Endopeptidases - genetics</subject><subject>Endopeptidases - immunology</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Gene Expression</subject><subject>Gene Expression Regulation</subject><subject>Humans</subject><subject>hydrolysis</subject><subject>Immunity, Innate</subject><subject>intracellular signaling peptides and proteins</subject><subject>Kinetics</subject><subject>Molecular Docking Simulation</subject><subject>NF-kappa B - chemistry</subject><subject>NF-kappa B - genetics</subject><subject>NF-kappa B - immunology</subject><subject>Nod2 Signaling Adaptor Protein - chemistry</subject><subject>Nod2 Signaling Adaptor Protein - genetics</subject><subject>Nod2 Signaling Adaptor Protein - immunology</subject><subject>Protein Binding</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Structure, Secondary</subject><subject>protein subunits</subject><subject>Proteins - chemistry</subject><subject>Proteins - genetics</subject><subject>Proteins - immunology</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - immunology</subject><subject>Sequence Alignment</subject><subject>Sequence Homology, Amino Acid</subject><subject>Signal Transduction</subject><subject>Substrate Specificity</subject><subject>transcription factor NF-kappa B</subject><subject>tumor necrosis factors</subject><subject>Tumor Suppressor Proteins - chemistry</subject><subject>Tumor Suppressor Proteins - genetics</subject><subject>Tumor Suppressor Proteins - immunology</subject><subject>ubiquitin</subject><subject>Ubiquitin - chemistry</subject><subject>Ubiquitin - genetics</subject><subject>Ubiquitin - immunology</subject><subject>Ubiquitin-Protein Ligases - chemistry</subject><subject>Ubiquitin-Protein Ligases - genetics</subject><subject>Ubiquitin-Protein Ligases - immunology</subject><subject>ubiquitination</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0E6vc_qFCOHLph7Di2c6kUQj-QIoHU9tCT5fhj6202LnF2Jf59XWVb4AKn8WieeT0zL0KnGHIMmH1e5evQa9vnJGU5iBwAv0MHGCq-oJjR97s34azcR4cxrhJAS1HtoX3CywoDrQ7Q9c2P-rYmWeuHx5g19-3XbApZe_elbs6yWk9-qyY7F84yNZisCcM0hj7OTHbjl4Pq_bA8Rh-c6qM92cUjdHd5cdtcL9rvV9-aul3okpFp4YRwxpDCGky7whlNTFUwDZQ64XDRcS1UYYTqOGFOYewo48BtR3lleaeq4gidz7pPm25tjbZpHNXLp9Gv1fhLBuXl35XBP8hl2MoSClyWIgl82gmM4efGxkmufUx37NVgwyZKAgAEGKPkvygWCQRMKE0onVE9hhhH694mwiBf_JIrOfslX_ySIGSyI7V9_HObt6ZXg36va9NNt96OMmpvB22NH62epAn-3z88A40gpgE</recordid><startdate>20160915</startdate><enddate>20160915</enddate><creator>Elliott, Paul R.</creator><creator>Leske, Derek</creator><creator>Hrdinka, Matous</creator><creator>Bagola, Katrin</creator><creator>Fiil, Berthe K.</creator><creator>McLaughlin, Stephen H.</creator><creator>Wagstaff, Jane</creator><creator>Volkmar, Norbert</creator><creator>Christianson, John C.</creator><creator>Kessler, Benedikt M.</creator><creator>Freund, Stefan M.V.</creator><creator>Komander, David</creator><creator>Gyrd-Hansen, Mads</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20160915</creationdate><title>SPATA2 Links CYLD to LUBAC, Activates CYLD, and Controls LUBAC Signaling</title><author>Elliott, Paul R. ; Leske, Derek ; Hrdinka, Matous ; Bagola, Katrin ; Fiil, Berthe K. ; McLaughlin, Stephen H. ; Wagstaff, Jane ; Volkmar, Norbert ; Christianson, John C. ; Kessler, Benedikt M. ; Freund, Stefan M.V. ; Komander, David ; Gyrd-Hansen, Mads</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-f88fdd23ed14b3fdc2d936c044f8f13b7c8a3d8ab726fa11f46707eb479e7ba93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino Acid Sequence</topic><topic>Binding Sites</topic><topic>Cloning, Molecular</topic><topic>Crystallography, X-Ray</topic><topic>Deubiquitinating Enzyme CYLD</topic><topic>Endopeptidases - chemistry</topic><topic>Endopeptidases - genetics</topic><topic>Endopeptidases - immunology</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Gene Expression</topic><topic>Gene Expression Regulation</topic><topic>Humans</topic><topic>hydrolysis</topic><topic>Immunity, Innate</topic><topic>intracellular signaling peptides and proteins</topic><topic>Kinetics</topic><topic>Molecular Docking Simulation</topic><topic>NF-kappa B - chemistry</topic><topic>NF-kappa B - genetics</topic><topic>NF-kappa B - immunology</topic><topic>Nod2 Signaling Adaptor Protein - chemistry</topic><topic>Nod2 Signaling Adaptor Protein - genetics</topic><topic>Nod2 Signaling Adaptor Protein - immunology</topic><topic>Protein Binding</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Structure, Secondary</topic><topic>protein subunits</topic><topic>Proteins - chemistry</topic><topic>Proteins - genetics</topic><topic>Proteins - immunology</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - immunology</topic><topic>Sequence Alignment</topic><topic>Sequence Homology, Amino Acid</topic><topic>Signal Transduction</topic><topic>Substrate Specificity</topic><topic>transcription factor NF-kappa B</topic><topic>tumor necrosis factors</topic><topic>Tumor Suppressor Proteins - chemistry</topic><topic>Tumor Suppressor Proteins - genetics</topic><topic>Tumor Suppressor Proteins - immunology</topic><topic>ubiquitin</topic><topic>Ubiquitin - chemistry</topic><topic>Ubiquitin - genetics</topic><topic>Ubiquitin - immunology</topic><topic>Ubiquitin-Protein Ligases - chemistry</topic><topic>Ubiquitin-Protein Ligases - genetics</topic><topic>Ubiquitin-Protein Ligases - immunology</topic><topic>ubiquitination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elliott, Paul R.</creatorcontrib><creatorcontrib>Leske, Derek</creatorcontrib><creatorcontrib>Hrdinka, Matous</creatorcontrib><creatorcontrib>Bagola, Katrin</creatorcontrib><creatorcontrib>Fiil, Berthe K.</creatorcontrib><creatorcontrib>McLaughlin, Stephen H.</creatorcontrib><creatorcontrib>Wagstaff, Jane</creatorcontrib><creatorcontrib>Volkmar, Norbert</creatorcontrib><creatorcontrib>Christianson, John C.</creatorcontrib><creatorcontrib>Kessler, Benedikt M.</creatorcontrib><creatorcontrib>Freund, Stefan M.V.</creatorcontrib><creatorcontrib>Komander, David</creatorcontrib><creatorcontrib>Gyrd-Hansen, Mads</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elliott, Paul R.</au><au>Leske, Derek</au><au>Hrdinka, Matous</au><au>Bagola, Katrin</au><au>Fiil, Berthe K.</au><au>McLaughlin, Stephen H.</au><au>Wagstaff, Jane</au><au>Volkmar, Norbert</au><au>Christianson, John C.</au><au>Kessler, Benedikt M.</au><au>Freund, Stefan M.V.</au><au>Komander, David</au><au>Gyrd-Hansen, Mads</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SPATA2 Links CYLD to LUBAC, Activates CYLD, and Controls LUBAC Signaling</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2016-09-15</date><risdate>2016</risdate><volume>63</volume><issue>6</issue><spage>990</spage><epage>1005</epage><pages>990-1005</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>The linear ubiquitin chain assembly complex (LUBAC) regulates immune signaling, and its function is regulated by the deubiquitinases OTULIN and CYLD, which associate with the catalytic subunit HOIP. However, the mechanism through which CYLD interacts with HOIP is unclear. We here show that CYLD interacts with HOIP via spermatogenesis-associated protein 2 (SPATA2). SPATA2 interacts with CYLD through its non-canonical PUB domain, which binds the catalytic CYLD USP domain in a CYLD B-box-dependent manner. Significantly, SPATA2 binding activates CYLD-mediated hydrolysis of ubiquitin chains. SPATA2 also harbors a conserved PUB-interacting motif that selectively docks into the HOIP PUB domain. In cells, SPATA2 is recruited to the TNF receptor 1 signaling complex and is required for CYLD recruitment. Loss of SPATA2 increases ubiquitination of LUBAC substrates and results in enhanced NOD2 signaling. Our data reveal SPATA2 as a high-affinity binding partner of CYLD and HOIP, and a regulatory component of LUBAC-mediated NF-κB signaling.
[Display omitted]
•CYLD recruitment to LUBAC and the TNF receptor 1 complex is mediated by SPATA2•SPATA2 forms a high-affinity complex with CYLD and stimulates CYLD’s activity•SPATA2, like OTULIN, uses a conserved PIM to dock to the HOIP PUB domain•SPATA2 limits ubiquitination of LUBAC substrates to regulate inflammatory signaling
Elliott et al. show that SPATA2 bridges CYLD with LUBAC to regulate substrate ubiquitination and inflammatory signaling. Structural and biochemical work defines SPATA2-CYLD and SPATA2-HOIP interfaces, reveals SPATA2-mediated CYLD activation, and provides first insights into stoichiometry of LUBAC complexes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27591049</pmid><doi>10.1016/j.molcel.2016.08.001</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-2765 |
ispartof | Molecular cell, 2016-09, Vol.63 (6), p.990-1005 |
issn | 1097-2765 1097-4164 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5031558 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Binding Sites Cloning, Molecular Crystallography, X-Ray Deubiquitinating Enzyme CYLD Endopeptidases - chemistry Endopeptidases - genetics Endopeptidases - immunology Escherichia coli - genetics Escherichia coli - metabolism Gene Expression Gene Expression Regulation Humans hydrolysis Immunity, Innate intracellular signaling peptides and proteins Kinetics Molecular Docking Simulation NF-kappa B - chemistry NF-kappa B - genetics NF-kappa B - immunology Nod2 Signaling Adaptor Protein - chemistry Nod2 Signaling Adaptor Protein - genetics Nod2 Signaling Adaptor Protein - immunology Protein Binding Protein Interaction Domains and Motifs Protein Structure, Secondary protein subunits Proteins - chemistry Proteins - genetics Proteins - immunology Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - immunology Sequence Alignment Sequence Homology, Amino Acid Signal Transduction Substrate Specificity transcription factor NF-kappa B tumor necrosis factors Tumor Suppressor Proteins - chemistry Tumor Suppressor Proteins - genetics Tumor Suppressor Proteins - immunology ubiquitin Ubiquitin - chemistry Ubiquitin - genetics Ubiquitin - immunology Ubiquitin-Protein Ligases - chemistry Ubiquitin-Protein Ligases - genetics Ubiquitin-Protein Ligases - immunology ubiquitination |
title | SPATA2 Links CYLD to LUBAC, Activates CYLD, and Controls LUBAC Signaling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A28%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SPATA2%20Links%20CYLD%20to%20LUBAC,%20Activates%20CYLD,%20and%20Controls%20LUBAC%20Signaling&rft.jtitle=Molecular%20cell&rft.au=Elliott,%20Paul%C2%A0R.&rft.date=2016-09-15&rft.volume=63&rft.issue=6&rft.spage=990&rft.epage=1005&rft.pages=990-1005&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2016.08.001&rft_dat=%3Cproquest_pubme%3E1820601244%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1820601244&rft_id=info:pmid/27591049&rft_els_id=S1097276516304154&rfr_iscdi=true |