SPATA2 Links CYLD to LUBAC, Activates CYLD, and Controls LUBAC Signaling

The linear ubiquitin chain assembly complex (LUBAC) regulates immune signaling, and its function is regulated by the deubiquitinases OTULIN and CYLD, which associate with the catalytic subunit HOIP. However, the mechanism through which CYLD interacts with HOIP is unclear. We here show that CYLD inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2016-09, Vol.63 (6), p.990-1005
Hauptverfasser: Elliott, Paul R., Leske, Derek, Hrdinka, Matous, Bagola, Katrin, Fiil, Berthe K., McLaughlin, Stephen H., Wagstaff, Jane, Volkmar, Norbert, Christianson, John C., Kessler, Benedikt M., Freund, Stefan M.V., Komander, David, Gyrd-Hansen, Mads
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1005
container_issue 6
container_start_page 990
container_title Molecular cell
container_volume 63
creator Elliott, Paul R.
Leske, Derek
Hrdinka, Matous
Bagola, Katrin
Fiil, Berthe K.
McLaughlin, Stephen H.
Wagstaff, Jane
Volkmar, Norbert
Christianson, John C.
Kessler, Benedikt M.
Freund, Stefan M.V.
Komander, David
Gyrd-Hansen, Mads
description The linear ubiquitin chain assembly complex (LUBAC) regulates immune signaling, and its function is regulated by the deubiquitinases OTULIN and CYLD, which associate with the catalytic subunit HOIP. However, the mechanism through which CYLD interacts with HOIP is unclear. We here show that CYLD interacts with HOIP via spermatogenesis-associated protein 2 (SPATA2). SPATA2 interacts with CYLD through its non-canonical PUB domain, which binds the catalytic CYLD USP domain in a CYLD B-box-dependent manner. Significantly, SPATA2 binding activates CYLD-mediated hydrolysis of ubiquitin chains. SPATA2 also harbors a conserved PUB-interacting motif that selectively docks into the HOIP PUB domain. In cells, SPATA2 is recruited to the TNF receptor 1 signaling complex and is required for CYLD recruitment. Loss of SPATA2 increases ubiquitination of LUBAC substrates and results in enhanced NOD2 signaling. Our data reveal SPATA2 as a high-affinity binding partner of CYLD and HOIP, and a regulatory component of LUBAC-mediated NF-κB signaling. [Display omitted] •CYLD recruitment to LUBAC and the TNF receptor 1 complex is mediated by SPATA2•SPATA2 forms a high-affinity complex with CYLD and stimulates CYLD’s activity•SPATA2, like OTULIN, uses a conserved PIM to dock to the HOIP PUB domain•SPATA2 limits ubiquitination of LUBAC substrates to regulate inflammatory signaling Elliott et al. show that SPATA2 bridges CYLD with LUBAC to regulate substrate ubiquitination and inflammatory signaling. Structural and biochemical work defines SPATA2-CYLD and SPATA2-HOIP interfaces, reveals SPATA2-mediated CYLD activation, and provides first insights into stoichiometry of LUBAC complexes.
doi_str_mv 10.1016/j.molcel.2016.08.001
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5031558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276516304154</els_id><sourcerecordid>1820601244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-f88fdd23ed14b3fdc2d936c044f8f13b7c8a3d8ab726fa11f46707eb479e7ba93</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0E6vc_qFCOHLph7Di2c6kUQj-QIoHU9tCT5fhj6202LnF2Jf59XWVb4AKn8WieeT0zL0KnGHIMmH1e5evQa9vnJGU5iBwAv0MHGCq-oJjR97s34azcR4cxrhJAS1HtoX3CywoDrQ7Q9c2P-rYmWeuHx5g19-3XbApZe_elbs6yWk9-qyY7F84yNZisCcM0hj7OTHbjl4Pq_bA8Rh-c6qM92cUjdHd5cdtcL9rvV9-aul3okpFp4YRwxpDCGky7whlNTFUwDZQ64XDRcS1UYYTqOGFOYewo48BtR3lleaeq4gidz7pPm25tjbZpHNXLp9Gv1fhLBuXl35XBP8hl2MoSClyWIgl82gmM4efGxkmufUx37NVgwyZKAgAEGKPkvygWCQRMKE0onVE9hhhH694mwiBf_JIrOfslX_ySIGSyI7V9_HObt6ZXg36va9NNt96OMmpvB22NH62epAn-3z88A40gpgE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1820601244</pqid></control><display><type>article</type><title>SPATA2 Links CYLD to LUBAC, Activates CYLD, and Controls LUBAC Signaling</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Elliott, Paul R. ; Leske, Derek ; Hrdinka, Matous ; Bagola, Katrin ; Fiil, Berthe K. ; McLaughlin, Stephen H. ; Wagstaff, Jane ; Volkmar, Norbert ; Christianson, John C. ; Kessler, Benedikt M. ; Freund, Stefan M.V. ; Komander, David ; Gyrd-Hansen, Mads</creator><creatorcontrib>Elliott, Paul R. ; Leske, Derek ; Hrdinka, Matous ; Bagola, Katrin ; Fiil, Berthe K. ; McLaughlin, Stephen H. ; Wagstaff, Jane ; Volkmar, Norbert ; Christianson, John C. ; Kessler, Benedikt M. ; Freund, Stefan M.V. ; Komander, David ; Gyrd-Hansen, Mads</creatorcontrib><description>The linear ubiquitin chain assembly complex (LUBAC) regulates immune signaling, and its function is regulated by the deubiquitinases OTULIN and CYLD, which associate with the catalytic subunit HOIP. However, the mechanism through which CYLD interacts with HOIP is unclear. We here show that CYLD interacts with HOIP via spermatogenesis-associated protein 2 (SPATA2). SPATA2 interacts with CYLD through its non-canonical PUB domain, which binds the catalytic CYLD USP domain in a CYLD B-box-dependent manner. Significantly, SPATA2 binding activates CYLD-mediated hydrolysis of ubiquitin chains. SPATA2 also harbors a conserved PUB-interacting motif that selectively docks into the HOIP PUB domain. In cells, SPATA2 is recruited to the TNF receptor 1 signaling complex and is required for CYLD recruitment. Loss of SPATA2 increases ubiquitination of LUBAC substrates and results in enhanced NOD2 signaling. Our data reveal SPATA2 as a high-affinity binding partner of CYLD and HOIP, and a regulatory component of LUBAC-mediated NF-κB signaling. [Display omitted] •CYLD recruitment to LUBAC and the TNF receptor 1 complex is mediated by SPATA2•SPATA2 forms a high-affinity complex with CYLD and stimulates CYLD’s activity•SPATA2, like OTULIN, uses a conserved PIM to dock to the HOIP PUB domain•SPATA2 limits ubiquitination of LUBAC substrates to regulate inflammatory signaling Elliott et al. show that SPATA2 bridges CYLD with LUBAC to regulate substrate ubiquitination and inflammatory signaling. Structural and biochemical work defines SPATA2-CYLD and SPATA2-HOIP interfaces, reveals SPATA2-mediated CYLD activation, and provides first insights into stoichiometry of LUBAC complexes.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2016.08.001</identifier><identifier>PMID: 27591049</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Binding Sites ; Cloning, Molecular ; Crystallography, X-Ray ; Deubiquitinating Enzyme CYLD ; Endopeptidases - chemistry ; Endopeptidases - genetics ; Endopeptidases - immunology ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Gene Expression ; Gene Expression Regulation ; Humans ; hydrolysis ; Immunity, Innate ; intracellular signaling peptides and proteins ; Kinetics ; Molecular Docking Simulation ; NF-kappa B - chemistry ; NF-kappa B - genetics ; NF-kappa B - immunology ; Nod2 Signaling Adaptor Protein - chemistry ; Nod2 Signaling Adaptor Protein - genetics ; Nod2 Signaling Adaptor Protein - immunology ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein Structure, Secondary ; protein subunits ; Proteins - chemistry ; Proteins - genetics ; Proteins - immunology ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - immunology ; Sequence Alignment ; Sequence Homology, Amino Acid ; Signal Transduction ; Substrate Specificity ; transcription factor NF-kappa B ; tumor necrosis factors ; Tumor Suppressor Proteins - chemistry ; Tumor Suppressor Proteins - genetics ; Tumor Suppressor Proteins - immunology ; ubiquitin ; Ubiquitin - chemistry ; Ubiquitin - genetics ; Ubiquitin - immunology ; Ubiquitin-Protein Ligases - chemistry ; Ubiquitin-Protein Ligases - genetics ; Ubiquitin-Protein Ligases - immunology ; ubiquitination</subject><ispartof>Molecular cell, 2016-09, Vol.63 (6), p.990-1005</ispartof><rights>2016 The Authors</rights><rights>Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2016 The Authors 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-f88fdd23ed14b3fdc2d936c044f8f13b7c8a3d8ab726fa11f46707eb479e7ba93</citedby><cites>FETCH-LOGICAL-c562t-f88fdd23ed14b3fdc2d936c044f8f13b7c8a3d8ab726fa11f46707eb479e7ba93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1097276516304154$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27591049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Elliott, Paul R.</creatorcontrib><creatorcontrib>Leske, Derek</creatorcontrib><creatorcontrib>Hrdinka, Matous</creatorcontrib><creatorcontrib>Bagola, Katrin</creatorcontrib><creatorcontrib>Fiil, Berthe K.</creatorcontrib><creatorcontrib>McLaughlin, Stephen H.</creatorcontrib><creatorcontrib>Wagstaff, Jane</creatorcontrib><creatorcontrib>Volkmar, Norbert</creatorcontrib><creatorcontrib>Christianson, John C.</creatorcontrib><creatorcontrib>Kessler, Benedikt M.</creatorcontrib><creatorcontrib>Freund, Stefan M.V.</creatorcontrib><creatorcontrib>Komander, David</creatorcontrib><creatorcontrib>Gyrd-Hansen, Mads</creatorcontrib><title>SPATA2 Links CYLD to LUBAC, Activates CYLD, and Controls LUBAC Signaling</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>The linear ubiquitin chain assembly complex (LUBAC) regulates immune signaling, and its function is regulated by the deubiquitinases OTULIN and CYLD, which associate with the catalytic subunit HOIP. However, the mechanism through which CYLD interacts with HOIP is unclear. We here show that CYLD interacts with HOIP via spermatogenesis-associated protein 2 (SPATA2). SPATA2 interacts with CYLD through its non-canonical PUB domain, which binds the catalytic CYLD USP domain in a CYLD B-box-dependent manner. Significantly, SPATA2 binding activates CYLD-mediated hydrolysis of ubiquitin chains. SPATA2 also harbors a conserved PUB-interacting motif that selectively docks into the HOIP PUB domain. In cells, SPATA2 is recruited to the TNF receptor 1 signaling complex and is required for CYLD recruitment. Loss of SPATA2 increases ubiquitination of LUBAC substrates and results in enhanced NOD2 signaling. Our data reveal SPATA2 as a high-affinity binding partner of CYLD and HOIP, and a regulatory component of LUBAC-mediated NF-κB signaling. [Display omitted] •CYLD recruitment to LUBAC and the TNF receptor 1 complex is mediated by SPATA2•SPATA2 forms a high-affinity complex with CYLD and stimulates CYLD’s activity•SPATA2, like OTULIN, uses a conserved PIM to dock to the HOIP PUB domain•SPATA2 limits ubiquitination of LUBAC substrates to regulate inflammatory signaling Elliott et al. show that SPATA2 bridges CYLD with LUBAC to regulate substrate ubiquitination and inflammatory signaling. Structural and biochemical work defines SPATA2-CYLD and SPATA2-HOIP interfaces, reveals SPATA2-mediated CYLD activation, and provides first insights into stoichiometry of LUBAC complexes.</description><subject>Amino Acid Sequence</subject><subject>Binding Sites</subject><subject>Cloning, Molecular</subject><subject>Crystallography, X-Ray</subject><subject>Deubiquitinating Enzyme CYLD</subject><subject>Endopeptidases - chemistry</subject><subject>Endopeptidases - genetics</subject><subject>Endopeptidases - immunology</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Gene Expression</subject><subject>Gene Expression Regulation</subject><subject>Humans</subject><subject>hydrolysis</subject><subject>Immunity, Innate</subject><subject>intracellular signaling peptides and proteins</subject><subject>Kinetics</subject><subject>Molecular Docking Simulation</subject><subject>NF-kappa B - chemistry</subject><subject>NF-kappa B - genetics</subject><subject>NF-kappa B - immunology</subject><subject>Nod2 Signaling Adaptor Protein - chemistry</subject><subject>Nod2 Signaling Adaptor Protein - genetics</subject><subject>Nod2 Signaling Adaptor Protein - immunology</subject><subject>Protein Binding</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Structure, Secondary</subject><subject>protein subunits</subject><subject>Proteins - chemistry</subject><subject>Proteins - genetics</subject><subject>Proteins - immunology</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - immunology</subject><subject>Sequence Alignment</subject><subject>Sequence Homology, Amino Acid</subject><subject>Signal Transduction</subject><subject>Substrate Specificity</subject><subject>transcription factor NF-kappa B</subject><subject>tumor necrosis factors</subject><subject>Tumor Suppressor Proteins - chemistry</subject><subject>Tumor Suppressor Proteins - genetics</subject><subject>Tumor Suppressor Proteins - immunology</subject><subject>ubiquitin</subject><subject>Ubiquitin - chemistry</subject><subject>Ubiquitin - genetics</subject><subject>Ubiquitin - immunology</subject><subject>Ubiquitin-Protein Ligases - chemistry</subject><subject>Ubiquitin-Protein Ligases - genetics</subject><subject>Ubiquitin-Protein Ligases - immunology</subject><subject>ubiquitination</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0E6vc_qFCOHLph7Di2c6kUQj-QIoHU9tCT5fhj6202LnF2Jf59XWVb4AKn8WieeT0zL0KnGHIMmH1e5evQa9vnJGU5iBwAv0MHGCq-oJjR97s34azcR4cxrhJAS1HtoX3CywoDrQ7Q9c2P-rYmWeuHx5g19-3XbApZe_elbs6yWk9-qyY7F84yNZisCcM0hj7OTHbjl4Pq_bA8Rh-c6qM92cUjdHd5cdtcL9rvV9-aul3okpFp4YRwxpDCGky7whlNTFUwDZQ64XDRcS1UYYTqOGFOYewo48BtR3lleaeq4gidz7pPm25tjbZpHNXLp9Gv1fhLBuXl35XBP8hl2MoSClyWIgl82gmM4efGxkmufUx37NVgwyZKAgAEGKPkvygWCQRMKE0onVE9hhhH694mwiBf_JIrOfslX_ySIGSyI7V9_HObt6ZXg36va9NNt96OMmpvB22NH62epAn-3z88A40gpgE</recordid><startdate>20160915</startdate><enddate>20160915</enddate><creator>Elliott, Paul R.</creator><creator>Leske, Derek</creator><creator>Hrdinka, Matous</creator><creator>Bagola, Katrin</creator><creator>Fiil, Berthe K.</creator><creator>McLaughlin, Stephen H.</creator><creator>Wagstaff, Jane</creator><creator>Volkmar, Norbert</creator><creator>Christianson, John C.</creator><creator>Kessler, Benedikt M.</creator><creator>Freund, Stefan M.V.</creator><creator>Komander, David</creator><creator>Gyrd-Hansen, Mads</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20160915</creationdate><title>SPATA2 Links CYLD to LUBAC, Activates CYLD, and Controls LUBAC Signaling</title><author>Elliott, Paul R. ; Leske, Derek ; Hrdinka, Matous ; Bagola, Katrin ; Fiil, Berthe K. ; McLaughlin, Stephen H. ; Wagstaff, Jane ; Volkmar, Norbert ; Christianson, John C. ; Kessler, Benedikt M. ; Freund, Stefan M.V. ; Komander, David ; Gyrd-Hansen, Mads</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-f88fdd23ed14b3fdc2d936c044f8f13b7c8a3d8ab726fa11f46707eb479e7ba93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino Acid Sequence</topic><topic>Binding Sites</topic><topic>Cloning, Molecular</topic><topic>Crystallography, X-Ray</topic><topic>Deubiquitinating Enzyme CYLD</topic><topic>Endopeptidases - chemistry</topic><topic>Endopeptidases - genetics</topic><topic>Endopeptidases - immunology</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Gene Expression</topic><topic>Gene Expression Regulation</topic><topic>Humans</topic><topic>hydrolysis</topic><topic>Immunity, Innate</topic><topic>intracellular signaling peptides and proteins</topic><topic>Kinetics</topic><topic>Molecular Docking Simulation</topic><topic>NF-kappa B - chemistry</topic><topic>NF-kappa B - genetics</topic><topic>NF-kappa B - immunology</topic><topic>Nod2 Signaling Adaptor Protein - chemistry</topic><topic>Nod2 Signaling Adaptor Protein - genetics</topic><topic>Nod2 Signaling Adaptor Protein - immunology</topic><topic>Protein Binding</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Structure, Secondary</topic><topic>protein subunits</topic><topic>Proteins - chemistry</topic><topic>Proteins - genetics</topic><topic>Proteins - immunology</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - immunology</topic><topic>Sequence Alignment</topic><topic>Sequence Homology, Amino Acid</topic><topic>Signal Transduction</topic><topic>Substrate Specificity</topic><topic>transcription factor NF-kappa B</topic><topic>tumor necrosis factors</topic><topic>Tumor Suppressor Proteins - chemistry</topic><topic>Tumor Suppressor Proteins - genetics</topic><topic>Tumor Suppressor Proteins - immunology</topic><topic>ubiquitin</topic><topic>Ubiquitin - chemistry</topic><topic>Ubiquitin - genetics</topic><topic>Ubiquitin - immunology</topic><topic>Ubiquitin-Protein Ligases - chemistry</topic><topic>Ubiquitin-Protein Ligases - genetics</topic><topic>Ubiquitin-Protein Ligases - immunology</topic><topic>ubiquitination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elliott, Paul R.</creatorcontrib><creatorcontrib>Leske, Derek</creatorcontrib><creatorcontrib>Hrdinka, Matous</creatorcontrib><creatorcontrib>Bagola, Katrin</creatorcontrib><creatorcontrib>Fiil, Berthe K.</creatorcontrib><creatorcontrib>McLaughlin, Stephen H.</creatorcontrib><creatorcontrib>Wagstaff, Jane</creatorcontrib><creatorcontrib>Volkmar, Norbert</creatorcontrib><creatorcontrib>Christianson, John C.</creatorcontrib><creatorcontrib>Kessler, Benedikt M.</creatorcontrib><creatorcontrib>Freund, Stefan M.V.</creatorcontrib><creatorcontrib>Komander, David</creatorcontrib><creatorcontrib>Gyrd-Hansen, Mads</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elliott, Paul R.</au><au>Leske, Derek</au><au>Hrdinka, Matous</au><au>Bagola, Katrin</au><au>Fiil, Berthe K.</au><au>McLaughlin, Stephen H.</au><au>Wagstaff, Jane</au><au>Volkmar, Norbert</au><au>Christianson, John C.</au><au>Kessler, Benedikt M.</au><au>Freund, Stefan M.V.</au><au>Komander, David</au><au>Gyrd-Hansen, Mads</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SPATA2 Links CYLD to LUBAC, Activates CYLD, and Controls LUBAC Signaling</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2016-09-15</date><risdate>2016</risdate><volume>63</volume><issue>6</issue><spage>990</spage><epage>1005</epage><pages>990-1005</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>The linear ubiquitin chain assembly complex (LUBAC) regulates immune signaling, and its function is regulated by the deubiquitinases OTULIN and CYLD, which associate with the catalytic subunit HOIP. However, the mechanism through which CYLD interacts with HOIP is unclear. We here show that CYLD interacts with HOIP via spermatogenesis-associated protein 2 (SPATA2). SPATA2 interacts with CYLD through its non-canonical PUB domain, which binds the catalytic CYLD USP domain in a CYLD B-box-dependent manner. Significantly, SPATA2 binding activates CYLD-mediated hydrolysis of ubiquitin chains. SPATA2 also harbors a conserved PUB-interacting motif that selectively docks into the HOIP PUB domain. In cells, SPATA2 is recruited to the TNF receptor 1 signaling complex and is required for CYLD recruitment. Loss of SPATA2 increases ubiquitination of LUBAC substrates and results in enhanced NOD2 signaling. Our data reveal SPATA2 as a high-affinity binding partner of CYLD and HOIP, and a regulatory component of LUBAC-mediated NF-κB signaling. [Display omitted] •CYLD recruitment to LUBAC and the TNF receptor 1 complex is mediated by SPATA2•SPATA2 forms a high-affinity complex with CYLD and stimulates CYLD’s activity•SPATA2, like OTULIN, uses a conserved PIM to dock to the HOIP PUB domain•SPATA2 limits ubiquitination of LUBAC substrates to regulate inflammatory signaling Elliott et al. show that SPATA2 bridges CYLD with LUBAC to regulate substrate ubiquitination and inflammatory signaling. Structural and biochemical work defines SPATA2-CYLD and SPATA2-HOIP interfaces, reveals SPATA2-mediated CYLD activation, and provides first insights into stoichiometry of LUBAC complexes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27591049</pmid><doi>10.1016/j.molcel.2016.08.001</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2016-09, Vol.63 (6), p.990-1005
issn 1097-2765
1097-4164
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5031558
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Binding Sites
Cloning, Molecular
Crystallography, X-Ray
Deubiquitinating Enzyme CYLD
Endopeptidases - chemistry
Endopeptidases - genetics
Endopeptidases - immunology
Escherichia coli - genetics
Escherichia coli - metabolism
Gene Expression
Gene Expression Regulation
Humans
hydrolysis
Immunity, Innate
intracellular signaling peptides and proteins
Kinetics
Molecular Docking Simulation
NF-kappa B - chemistry
NF-kappa B - genetics
NF-kappa B - immunology
Nod2 Signaling Adaptor Protein - chemistry
Nod2 Signaling Adaptor Protein - genetics
Nod2 Signaling Adaptor Protein - immunology
Protein Binding
Protein Interaction Domains and Motifs
Protein Structure, Secondary
protein subunits
Proteins - chemistry
Proteins - genetics
Proteins - immunology
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - immunology
Sequence Alignment
Sequence Homology, Amino Acid
Signal Transduction
Substrate Specificity
transcription factor NF-kappa B
tumor necrosis factors
Tumor Suppressor Proteins - chemistry
Tumor Suppressor Proteins - genetics
Tumor Suppressor Proteins - immunology
ubiquitin
Ubiquitin - chemistry
Ubiquitin - genetics
Ubiquitin - immunology
Ubiquitin-Protein Ligases - chemistry
Ubiquitin-Protein Ligases - genetics
Ubiquitin-Protein Ligases - immunology
ubiquitination
title SPATA2 Links CYLD to LUBAC, Activates CYLD, and Controls LUBAC Signaling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A28%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SPATA2%20Links%20CYLD%20to%20LUBAC,%20Activates%20CYLD,%20and%20Controls%20LUBAC%20Signaling&rft.jtitle=Molecular%20cell&rft.au=Elliott,%20Paul%C2%A0R.&rft.date=2016-09-15&rft.volume=63&rft.issue=6&rft.spage=990&rft.epage=1005&rft.pages=990-1005&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2016.08.001&rft_dat=%3Cproquest_pubme%3E1820601244%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1820601244&rft_id=info:pmid/27591049&rft_els_id=S1097276516304154&rfr_iscdi=true