Microbial communities reflect temporal changes in cyanobacterial composition in a shallow ephemeral freshwater lake
The frequency of freshwater cyanobacterial blooms is at risk of increasing as a consequence of climate change and eutrophication of waterways. It is increasingly apparent that abiotic data are insufficient to explain variability within the cyanobacterial community, with biotic factors such as hetero...
Gespeichert in:
Veröffentlicht in: | The ISME Journal 2016-06, Vol.10 (6), p.1337-1351 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1351 |
---|---|
container_issue | 6 |
container_start_page | 1337 |
container_title | The ISME Journal |
container_volume | 10 |
creator | Woodhouse, Jason Nicholas Kinsela, Andrew Stephen Collins, Richard Nicholas Bowling, Lee Chester Honeyman, Gordon L Holliday, Jon K Neilan, Brett Anthony |
description | The frequency of freshwater cyanobacterial blooms is at risk of increasing as a consequence of climate change and eutrophication of waterways. It is increasingly apparent that abiotic data are insufficient to explain variability within the cyanobacterial community, with biotic factors such as heterotrophic bacterioplankton, viruses and protists emerging as critical drivers. During the Australian summer of 2012–2013, a bloom that occurred in a shallow ephemeral lake over a 6-month period was comprised of 22 distinct cyanobacteria, including
Microcystis, Dolichospermum
,
Oscillatoria
and
Sphaerospermopsis
. Cyanobacterial cell densities, bacterial community composition and abiotic parameters were assessed over this period. Alpha-diversity indices and multivariate analysis were successful at differentiating three distinct bloom phases and the contribution of abiotic parameters to each. Network analysis, assessing correlations between biotic and abiotic variables, reproduced these phases and assessed the relative importance of both abiotic and biotic factors. Variables possessing elevated betweeness centrality included temperature, sodium and operational taxonomic units belonging to the phyla Verrucomicrobia, Planctomyces, Bacteroidetes and Actinobacteria. Species-specific associations between cyanobacteria and bacterioplankton, including the free-living Actinobacteria acI, Bacteroidetes, Betaproteobacteria and Verrucomicrobia, were also identified. We concluded that changes in the abundance and nature of freshwater cyanobacteria are associated with changes in the diversity and composition of lake bacterioplankton. Given this, an increase in the frequency of cyanobacteria blooms has the potential to alter nutrient cycling and contribute to long-term functional perturbation of freshwater systems. |
doi_str_mv | 10.1038/ismej.2015.218 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5029192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4058025731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-e31d0f2f426c0ecd55f5d209d2668572d80a452fa50036e0709793b8ae11e0473</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi1ERUvhyhFF4sJlt2MntuMLEqr4qNSKC5wtrzNpvCR2sJNW_fc43WXVVj1wsqX3Y8Z-CHlHYU2hrM9cGnC7ZkD5mtH6BTmhktOVLCW8PNwFOyavU9oCcCmEfEWOmRCl4JydkHTlbAwbZ_rChmGYvZscpiJi26OdigmHMcRF7Iy_zoLzhb0zPmyMnTDuY2NIORb8opoidabvw22BY4cDLuE2YupuTQ4UvfmNb8hRa_qEb_fnKfn19cvP8--ryx_fLs4_X65spei0wpI20LK2YsIC2obzljcMVJO3r7lkTQ2m4qw1HKAUCBKUVOWmNkgpQiXLU_Jp1zvOmwEbi37K2-gxusHEOx2M048V7zp9HW40B6aoYrng474ghj8zpkkPLlnse-MxzElTqapKCSH4f1hrJQUIBtn64Yl1G-bo80_cuxilql5mr3eujCelzOOwNwW9oNf36PWCXmf0OfD-4WsP9n-ss-FsZ0hZyjDjg7nPV_4FUJe8ig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1789211982</pqid></control><display><type>article</type><title>Microbial communities reflect temporal changes in cyanobacterial composition in a shallow ephemeral freshwater lake</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Woodhouse, Jason Nicholas ; Kinsela, Andrew Stephen ; Collins, Richard Nicholas ; Bowling, Lee Chester ; Honeyman, Gordon L ; Holliday, Jon K ; Neilan, Brett Anthony</creator><creatorcontrib>Woodhouse, Jason Nicholas ; Kinsela, Andrew Stephen ; Collins, Richard Nicholas ; Bowling, Lee Chester ; Honeyman, Gordon L ; Holliday, Jon K ; Neilan, Brett Anthony</creatorcontrib><description>The frequency of freshwater cyanobacterial blooms is at risk of increasing as a consequence of climate change and eutrophication of waterways. It is increasingly apparent that abiotic data are insufficient to explain variability within the cyanobacterial community, with biotic factors such as heterotrophic bacterioplankton, viruses and protists emerging as critical drivers. During the Australian summer of 2012–2013, a bloom that occurred in a shallow ephemeral lake over a 6-month period was comprised of 22 distinct cyanobacteria, including
Microcystis, Dolichospermum
,
Oscillatoria
and
Sphaerospermopsis
. Cyanobacterial cell densities, bacterial community composition and abiotic parameters were assessed over this period. Alpha-diversity indices and multivariate analysis were successful at differentiating three distinct bloom phases and the contribution of abiotic parameters to each. Network analysis, assessing correlations between biotic and abiotic variables, reproduced these phases and assessed the relative importance of both abiotic and biotic factors. Variables possessing elevated betweeness centrality included temperature, sodium and operational taxonomic units belonging to the phyla Verrucomicrobia, Planctomyces, Bacteroidetes and Actinobacteria. Species-specific associations between cyanobacteria and bacterioplankton, including the free-living Actinobacteria acI, Bacteroidetes, Betaproteobacteria and Verrucomicrobia, were also identified. We concluded that changes in the abundance and nature of freshwater cyanobacteria are associated with changes in the diversity and composition of lake bacterioplankton. Given this, an increase in the frequency of cyanobacteria blooms has the potential to alter nutrient cycling and contribute to long-term functional perturbation of freshwater systems.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/ismej.2015.218</identifier><identifier>PMID: 26636552</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/47 ; 45/77 ; 631/326/171/1878 ; 631/326/2565/855 ; Actinobacteria ; Australia ; Bacteria - classification ; Bacteria - genetics ; Bacteria - growth & development ; Biodiversity ; Biomedical and Life Sciences ; Biotic factors ; Climate Change ; Community composition ; Cyanobacteria ; Cyanobacteria - classification ; Cyanobacteria - genetics ; Cyanobacteria - growth & development ; Diversity indices ; Ecology ; Ephemeral lakes ; Eutrophication ; Evolutionary Biology ; Fresh water ; Fresh Water - microbiology ; Freshwater lakes ; Lakes - microbiology ; Life Sciences ; Microbial activity ; Microbial Consortia ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Microcystis ; Multivariate analysis ; Nutrient cycles ; Original ; original-article ; Oscillatoria ; Planctomyces ; Plankton - classification ; Plankton - genetics ; Plankton - growth & development ; Seasons ; Species Specificity ; Verrucomicrobia ; Water Microbiology ; Waterways</subject><ispartof>The ISME Journal, 2016-06, Vol.10 (6), p.1337-1351</ispartof><rights>International Society for Microbial Ecology 2015</rights><rights>Copyright Nature Publishing Group Jun 2016</rights><rights>Copyright © 2015 International Society for Microbial Ecology 2015 International Society for Microbial Ecology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-e31d0f2f426c0ecd55f5d209d2668572d80a452fa50036e0709793b8ae11e0473</citedby><cites>FETCH-LOGICAL-c491t-e31d0f2f426c0ecd55f5d209d2668572d80a452fa50036e0709793b8ae11e0473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5029192/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5029192/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26636552$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Woodhouse, Jason Nicholas</creatorcontrib><creatorcontrib>Kinsela, Andrew Stephen</creatorcontrib><creatorcontrib>Collins, Richard Nicholas</creatorcontrib><creatorcontrib>Bowling, Lee Chester</creatorcontrib><creatorcontrib>Honeyman, Gordon L</creatorcontrib><creatorcontrib>Holliday, Jon K</creatorcontrib><creatorcontrib>Neilan, Brett Anthony</creatorcontrib><title>Microbial communities reflect temporal changes in cyanobacterial composition in a shallow ephemeral freshwater lake</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>The frequency of freshwater cyanobacterial blooms is at risk of increasing as a consequence of climate change and eutrophication of waterways. It is increasingly apparent that abiotic data are insufficient to explain variability within the cyanobacterial community, with biotic factors such as heterotrophic bacterioplankton, viruses and protists emerging as critical drivers. During the Australian summer of 2012–2013, a bloom that occurred in a shallow ephemeral lake over a 6-month period was comprised of 22 distinct cyanobacteria, including
Microcystis, Dolichospermum
,
Oscillatoria
and
Sphaerospermopsis
. Cyanobacterial cell densities, bacterial community composition and abiotic parameters were assessed over this period. Alpha-diversity indices and multivariate analysis were successful at differentiating three distinct bloom phases and the contribution of abiotic parameters to each. Network analysis, assessing correlations between biotic and abiotic variables, reproduced these phases and assessed the relative importance of both abiotic and biotic factors. Variables possessing elevated betweeness centrality included temperature, sodium and operational taxonomic units belonging to the phyla Verrucomicrobia, Planctomyces, Bacteroidetes and Actinobacteria. Species-specific associations between cyanobacteria and bacterioplankton, including the free-living Actinobacteria acI, Bacteroidetes, Betaproteobacteria and Verrucomicrobia, were also identified. We concluded that changes in the abundance and nature of freshwater cyanobacteria are associated with changes in the diversity and composition of lake bacterioplankton. Given this, an increase in the frequency of cyanobacteria blooms has the potential to alter nutrient cycling and contribute to long-term functional perturbation of freshwater systems.</description><subject>45/47</subject><subject>45/77</subject><subject>631/326/171/1878</subject><subject>631/326/2565/855</subject><subject>Actinobacteria</subject><subject>Australia</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacteria - growth & development</subject><subject>Biodiversity</subject><subject>Biomedical and Life Sciences</subject><subject>Biotic factors</subject><subject>Climate Change</subject><subject>Community composition</subject><subject>Cyanobacteria</subject><subject>Cyanobacteria - classification</subject><subject>Cyanobacteria - genetics</subject><subject>Cyanobacteria - growth & development</subject><subject>Diversity indices</subject><subject>Ecology</subject><subject>Ephemeral lakes</subject><subject>Eutrophication</subject><subject>Evolutionary Biology</subject><subject>Fresh water</subject><subject>Fresh Water - microbiology</subject><subject>Freshwater lakes</subject><subject>Lakes - microbiology</subject><subject>Life Sciences</subject><subject>Microbial activity</subject><subject>Microbial Consortia</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microcystis</subject><subject>Multivariate analysis</subject><subject>Nutrient cycles</subject><subject>Original</subject><subject>original-article</subject><subject>Oscillatoria</subject><subject>Planctomyces</subject><subject>Plankton - classification</subject><subject>Plankton - genetics</subject><subject>Plankton - growth & development</subject><subject>Seasons</subject><subject>Species Specificity</subject><subject>Verrucomicrobia</subject><subject>Water Microbiology</subject><subject>Waterways</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkU1v1DAQhi1ERUvhyhFF4sJlt2MntuMLEqr4qNSKC5wtrzNpvCR2sJNW_fc43WXVVj1wsqX3Y8Z-CHlHYU2hrM9cGnC7ZkD5mtH6BTmhktOVLCW8PNwFOyavU9oCcCmEfEWOmRCl4JydkHTlbAwbZ_rChmGYvZscpiJi26OdigmHMcRF7Iy_zoLzhb0zPmyMnTDuY2NIORb8opoidabvw22BY4cDLuE2YupuTQ4UvfmNb8hRa_qEb_fnKfn19cvP8--ryx_fLs4_X65spei0wpI20LK2YsIC2obzljcMVJO3r7lkTQ2m4qw1HKAUCBKUVOWmNkgpQiXLU_Jp1zvOmwEbi37K2-gxusHEOx2M048V7zp9HW40B6aoYrng474ghj8zpkkPLlnse-MxzElTqapKCSH4f1hrJQUIBtn64Yl1G-bo80_cuxilql5mr3eujCelzOOwNwW9oNf36PWCXmf0OfD-4WsP9n-ss-FsZ0hZyjDjg7nPV_4FUJe8ig</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Woodhouse, Jason Nicholas</creator><creator>Kinsela, Andrew Stephen</creator><creator>Collins, Richard Nicholas</creator><creator>Bowling, Lee Chester</creator><creator>Honeyman, Gordon L</creator><creator>Holliday, Jon K</creator><creator>Neilan, Brett Anthony</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160601</creationdate><title>Microbial communities reflect temporal changes in cyanobacterial composition in a shallow ephemeral freshwater lake</title><author>Woodhouse, Jason Nicholas ; Kinsela, Andrew Stephen ; Collins, Richard Nicholas ; Bowling, Lee Chester ; Honeyman, Gordon L ; Holliday, Jon K ; Neilan, Brett Anthony</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-e31d0f2f426c0ecd55f5d209d2668572d80a452fa50036e0709793b8ae11e0473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>45/47</topic><topic>45/77</topic><topic>631/326/171/1878</topic><topic>631/326/2565/855</topic><topic>Actinobacteria</topic><topic>Australia</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacteria - growth & development</topic><topic>Biodiversity</topic><topic>Biomedical and Life Sciences</topic><topic>Biotic factors</topic><topic>Climate Change</topic><topic>Community composition</topic><topic>Cyanobacteria</topic><topic>Cyanobacteria - classification</topic><topic>Cyanobacteria - genetics</topic><topic>Cyanobacteria - growth & development</topic><topic>Diversity indices</topic><topic>Ecology</topic><topic>Ephemeral lakes</topic><topic>Eutrophication</topic><topic>Evolutionary Biology</topic><topic>Fresh water</topic><topic>Fresh Water - microbiology</topic><topic>Freshwater lakes</topic><topic>Lakes - microbiology</topic><topic>Life Sciences</topic><topic>Microbial activity</topic><topic>Microbial Consortia</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microcystis</topic><topic>Multivariate analysis</topic><topic>Nutrient cycles</topic><topic>Original</topic><topic>original-article</topic><topic>Oscillatoria</topic><topic>Planctomyces</topic><topic>Plankton - classification</topic><topic>Plankton - genetics</topic><topic>Plankton - growth & development</topic><topic>Seasons</topic><topic>Species Specificity</topic><topic>Verrucomicrobia</topic><topic>Water Microbiology</topic><topic>Waterways</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woodhouse, Jason Nicholas</creatorcontrib><creatorcontrib>Kinsela, Andrew Stephen</creatorcontrib><creatorcontrib>Collins, Richard Nicholas</creatorcontrib><creatorcontrib>Bowling, Lee Chester</creatorcontrib><creatorcontrib>Honeyman, Gordon L</creatorcontrib><creatorcontrib>Holliday, Jon K</creatorcontrib><creatorcontrib>Neilan, Brett Anthony</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woodhouse, Jason Nicholas</au><au>Kinsela, Andrew Stephen</au><au>Collins, Richard Nicholas</au><au>Bowling, Lee Chester</au><au>Honeyman, Gordon L</au><au>Holliday, Jon K</au><au>Neilan, Brett Anthony</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial communities reflect temporal changes in cyanobacterial composition in a shallow ephemeral freshwater lake</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>10</volume><issue>6</issue><spage>1337</spage><epage>1351</epage><pages>1337-1351</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>The frequency of freshwater cyanobacterial blooms is at risk of increasing as a consequence of climate change and eutrophication of waterways. It is increasingly apparent that abiotic data are insufficient to explain variability within the cyanobacterial community, with biotic factors such as heterotrophic bacterioplankton, viruses and protists emerging as critical drivers. During the Australian summer of 2012–2013, a bloom that occurred in a shallow ephemeral lake over a 6-month period was comprised of 22 distinct cyanobacteria, including
Microcystis, Dolichospermum
,
Oscillatoria
and
Sphaerospermopsis
. Cyanobacterial cell densities, bacterial community composition and abiotic parameters were assessed over this period. Alpha-diversity indices and multivariate analysis were successful at differentiating three distinct bloom phases and the contribution of abiotic parameters to each. Network analysis, assessing correlations between biotic and abiotic variables, reproduced these phases and assessed the relative importance of both abiotic and biotic factors. Variables possessing elevated betweeness centrality included temperature, sodium and operational taxonomic units belonging to the phyla Verrucomicrobia, Planctomyces, Bacteroidetes and Actinobacteria. Species-specific associations between cyanobacteria and bacterioplankton, including the free-living Actinobacteria acI, Bacteroidetes, Betaproteobacteria and Verrucomicrobia, were also identified. We concluded that changes in the abundance and nature of freshwater cyanobacteria are associated with changes in the diversity and composition of lake bacterioplankton. Given this, an increase in the frequency of cyanobacteria blooms has the potential to alter nutrient cycling and contribute to long-term functional perturbation of freshwater systems.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26636552</pmid><doi>10.1038/ismej.2015.218</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-7362 |
ispartof | The ISME Journal, 2016-06, Vol.10 (6), p.1337-1351 |
issn | 1751-7362 1751-7370 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5029192 |
source | Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | 45/47 45/77 631/326/171/1878 631/326/2565/855 Actinobacteria Australia Bacteria - classification Bacteria - genetics Bacteria - growth & development Biodiversity Biomedical and Life Sciences Biotic factors Climate Change Community composition Cyanobacteria Cyanobacteria - classification Cyanobacteria - genetics Cyanobacteria - growth & development Diversity indices Ecology Ephemeral lakes Eutrophication Evolutionary Biology Fresh water Fresh Water - microbiology Freshwater lakes Lakes - microbiology Life Sciences Microbial activity Microbial Consortia Microbial Ecology Microbial Genetics and Genomics Microbiology Microcystis Multivariate analysis Nutrient cycles Original original-article Oscillatoria Planctomyces Plankton - classification Plankton - genetics Plankton - growth & development Seasons Species Specificity Verrucomicrobia Water Microbiology Waterways |
title | Microbial communities reflect temporal changes in cyanobacterial composition in a shallow ephemeral freshwater lake |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T05%3A20%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20communities%20reflect%20temporal%20changes%20in%20cyanobacterial%20composition%20in%20a%20shallow%20ephemeral%20freshwater%20lake&rft.jtitle=The%20ISME%20Journal&rft.au=Woodhouse,%20Jason%20Nicholas&rft.date=2016-06-01&rft.volume=10&rft.issue=6&rft.spage=1337&rft.epage=1351&rft.pages=1337-1351&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/ismej.2015.218&rft_dat=%3Cproquest_pubme%3E4058025731%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1789211982&rft_id=info:pmid/26636552&rfr_iscdi=true |