Microbial communities reflect temporal changes in cyanobacterial composition in a shallow ephemeral freshwater lake

The frequency of freshwater cyanobacterial blooms is at risk of increasing as a consequence of climate change and eutrophication of waterways. It is increasingly apparent that abiotic data are insufficient to explain variability within the cyanobacterial community, with biotic factors such as hetero...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The ISME Journal 2016-06, Vol.10 (6), p.1337-1351
Hauptverfasser: Woodhouse, Jason Nicholas, Kinsela, Andrew Stephen, Collins, Richard Nicholas, Bowling, Lee Chester, Honeyman, Gordon L, Holliday, Jon K, Neilan, Brett Anthony
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1351
container_issue 6
container_start_page 1337
container_title The ISME Journal
container_volume 10
creator Woodhouse, Jason Nicholas
Kinsela, Andrew Stephen
Collins, Richard Nicholas
Bowling, Lee Chester
Honeyman, Gordon L
Holliday, Jon K
Neilan, Brett Anthony
description The frequency of freshwater cyanobacterial blooms is at risk of increasing as a consequence of climate change and eutrophication of waterways. It is increasingly apparent that abiotic data are insufficient to explain variability within the cyanobacterial community, with biotic factors such as heterotrophic bacterioplankton, viruses and protists emerging as critical drivers. During the Australian summer of 2012–2013, a bloom that occurred in a shallow ephemeral lake over a 6-month period was comprised of 22 distinct cyanobacteria, including Microcystis, Dolichospermum , Oscillatoria and Sphaerospermopsis . Cyanobacterial cell densities, bacterial community composition and abiotic parameters were assessed over this period. Alpha-diversity indices and multivariate analysis were successful at differentiating three distinct bloom phases and the contribution of abiotic parameters to each. Network analysis, assessing correlations between biotic and abiotic variables, reproduced these phases and assessed the relative importance of both abiotic and biotic factors. Variables possessing elevated betweeness centrality included temperature, sodium and operational taxonomic units belonging to the phyla Verrucomicrobia, Planctomyces, Bacteroidetes and Actinobacteria. Species-specific associations between cyanobacteria and bacterioplankton, including the free-living Actinobacteria acI, Bacteroidetes, Betaproteobacteria and Verrucomicrobia, were also identified. We concluded that changes in the abundance and nature of freshwater cyanobacteria are associated with changes in the diversity and composition of lake bacterioplankton. Given this, an increase in the frequency of cyanobacteria blooms has the potential to alter nutrient cycling and contribute to long-term functional perturbation of freshwater systems.
doi_str_mv 10.1038/ismej.2015.218
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5029192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4058025731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-e31d0f2f426c0ecd55f5d209d2668572d80a452fa50036e0709793b8ae11e0473</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi1ERUvhyhFF4sJlt2MntuMLEqr4qNSKC5wtrzNpvCR2sJNW_fc43WXVVj1wsqX3Y8Z-CHlHYU2hrM9cGnC7ZkD5mtH6BTmhktOVLCW8PNwFOyavU9oCcCmEfEWOmRCl4JydkHTlbAwbZ_rChmGYvZscpiJi26OdigmHMcRF7Iy_zoLzhb0zPmyMnTDuY2NIORb8opoidabvw22BY4cDLuE2YupuTQ4UvfmNb8hRa_qEb_fnKfn19cvP8--ryx_fLs4_X65spei0wpI20LK2YsIC2obzljcMVJO3r7lkTQ2m4qw1HKAUCBKUVOWmNkgpQiXLU_Jp1zvOmwEbi37K2-gxusHEOx2M048V7zp9HW40B6aoYrng474ghj8zpkkPLlnse-MxzElTqapKCSH4f1hrJQUIBtn64Yl1G-bo80_cuxilql5mr3eujCelzOOwNwW9oNf36PWCXmf0OfD-4WsP9n-ss-FsZ0hZyjDjg7nPV_4FUJe8ig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1789211982</pqid></control><display><type>article</type><title>Microbial communities reflect temporal changes in cyanobacterial composition in a shallow ephemeral freshwater lake</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Woodhouse, Jason Nicholas ; Kinsela, Andrew Stephen ; Collins, Richard Nicholas ; Bowling, Lee Chester ; Honeyman, Gordon L ; Holliday, Jon K ; Neilan, Brett Anthony</creator><creatorcontrib>Woodhouse, Jason Nicholas ; Kinsela, Andrew Stephen ; Collins, Richard Nicholas ; Bowling, Lee Chester ; Honeyman, Gordon L ; Holliday, Jon K ; Neilan, Brett Anthony</creatorcontrib><description>The frequency of freshwater cyanobacterial blooms is at risk of increasing as a consequence of climate change and eutrophication of waterways. It is increasingly apparent that abiotic data are insufficient to explain variability within the cyanobacterial community, with biotic factors such as heterotrophic bacterioplankton, viruses and protists emerging as critical drivers. During the Australian summer of 2012–2013, a bloom that occurred in a shallow ephemeral lake over a 6-month period was comprised of 22 distinct cyanobacteria, including Microcystis, Dolichospermum , Oscillatoria and Sphaerospermopsis . Cyanobacterial cell densities, bacterial community composition and abiotic parameters were assessed over this period. Alpha-diversity indices and multivariate analysis were successful at differentiating three distinct bloom phases and the contribution of abiotic parameters to each. Network analysis, assessing correlations between biotic and abiotic variables, reproduced these phases and assessed the relative importance of both abiotic and biotic factors. Variables possessing elevated betweeness centrality included temperature, sodium and operational taxonomic units belonging to the phyla Verrucomicrobia, Planctomyces, Bacteroidetes and Actinobacteria. Species-specific associations between cyanobacteria and bacterioplankton, including the free-living Actinobacteria acI, Bacteroidetes, Betaproteobacteria and Verrucomicrobia, were also identified. We concluded that changes in the abundance and nature of freshwater cyanobacteria are associated with changes in the diversity and composition of lake bacterioplankton. Given this, an increase in the frequency of cyanobacteria blooms has the potential to alter nutrient cycling and contribute to long-term functional perturbation of freshwater systems.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/ismej.2015.218</identifier><identifier>PMID: 26636552</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/47 ; 45/77 ; 631/326/171/1878 ; 631/326/2565/855 ; Actinobacteria ; Australia ; Bacteria - classification ; Bacteria - genetics ; Bacteria - growth &amp; development ; Biodiversity ; Biomedical and Life Sciences ; Biotic factors ; Climate Change ; Community composition ; Cyanobacteria ; Cyanobacteria - classification ; Cyanobacteria - genetics ; Cyanobacteria - growth &amp; development ; Diversity indices ; Ecology ; Ephemeral lakes ; Eutrophication ; Evolutionary Biology ; Fresh water ; Fresh Water - microbiology ; Freshwater lakes ; Lakes - microbiology ; Life Sciences ; Microbial activity ; Microbial Consortia ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Microcystis ; Multivariate analysis ; Nutrient cycles ; Original ; original-article ; Oscillatoria ; Planctomyces ; Plankton - classification ; Plankton - genetics ; Plankton - growth &amp; development ; Seasons ; Species Specificity ; Verrucomicrobia ; Water Microbiology ; Waterways</subject><ispartof>The ISME Journal, 2016-06, Vol.10 (6), p.1337-1351</ispartof><rights>International Society for Microbial Ecology 2015</rights><rights>Copyright Nature Publishing Group Jun 2016</rights><rights>Copyright © 2015 International Society for Microbial Ecology 2015 International Society for Microbial Ecology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-e31d0f2f426c0ecd55f5d209d2668572d80a452fa50036e0709793b8ae11e0473</citedby><cites>FETCH-LOGICAL-c491t-e31d0f2f426c0ecd55f5d209d2668572d80a452fa50036e0709793b8ae11e0473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5029192/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5029192/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26636552$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Woodhouse, Jason Nicholas</creatorcontrib><creatorcontrib>Kinsela, Andrew Stephen</creatorcontrib><creatorcontrib>Collins, Richard Nicholas</creatorcontrib><creatorcontrib>Bowling, Lee Chester</creatorcontrib><creatorcontrib>Honeyman, Gordon L</creatorcontrib><creatorcontrib>Holliday, Jon K</creatorcontrib><creatorcontrib>Neilan, Brett Anthony</creatorcontrib><title>Microbial communities reflect temporal changes in cyanobacterial composition in a shallow ephemeral freshwater lake</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>The frequency of freshwater cyanobacterial blooms is at risk of increasing as a consequence of climate change and eutrophication of waterways. It is increasingly apparent that abiotic data are insufficient to explain variability within the cyanobacterial community, with biotic factors such as heterotrophic bacterioplankton, viruses and protists emerging as critical drivers. During the Australian summer of 2012–2013, a bloom that occurred in a shallow ephemeral lake over a 6-month period was comprised of 22 distinct cyanobacteria, including Microcystis, Dolichospermum , Oscillatoria and Sphaerospermopsis . Cyanobacterial cell densities, bacterial community composition and abiotic parameters were assessed over this period. Alpha-diversity indices and multivariate analysis were successful at differentiating three distinct bloom phases and the contribution of abiotic parameters to each. Network analysis, assessing correlations between biotic and abiotic variables, reproduced these phases and assessed the relative importance of both abiotic and biotic factors. Variables possessing elevated betweeness centrality included temperature, sodium and operational taxonomic units belonging to the phyla Verrucomicrobia, Planctomyces, Bacteroidetes and Actinobacteria. Species-specific associations between cyanobacteria and bacterioplankton, including the free-living Actinobacteria acI, Bacteroidetes, Betaproteobacteria and Verrucomicrobia, were also identified. We concluded that changes in the abundance and nature of freshwater cyanobacteria are associated with changes in the diversity and composition of lake bacterioplankton. Given this, an increase in the frequency of cyanobacteria blooms has the potential to alter nutrient cycling and contribute to long-term functional perturbation of freshwater systems.</description><subject>45/47</subject><subject>45/77</subject><subject>631/326/171/1878</subject><subject>631/326/2565/855</subject><subject>Actinobacteria</subject><subject>Australia</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacteria - growth &amp; development</subject><subject>Biodiversity</subject><subject>Biomedical and Life Sciences</subject><subject>Biotic factors</subject><subject>Climate Change</subject><subject>Community composition</subject><subject>Cyanobacteria</subject><subject>Cyanobacteria - classification</subject><subject>Cyanobacteria - genetics</subject><subject>Cyanobacteria - growth &amp; development</subject><subject>Diversity indices</subject><subject>Ecology</subject><subject>Ephemeral lakes</subject><subject>Eutrophication</subject><subject>Evolutionary Biology</subject><subject>Fresh water</subject><subject>Fresh Water - microbiology</subject><subject>Freshwater lakes</subject><subject>Lakes - microbiology</subject><subject>Life Sciences</subject><subject>Microbial activity</subject><subject>Microbial Consortia</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microcystis</subject><subject>Multivariate analysis</subject><subject>Nutrient cycles</subject><subject>Original</subject><subject>original-article</subject><subject>Oscillatoria</subject><subject>Planctomyces</subject><subject>Plankton - classification</subject><subject>Plankton - genetics</subject><subject>Plankton - growth &amp; development</subject><subject>Seasons</subject><subject>Species Specificity</subject><subject>Verrucomicrobia</subject><subject>Water Microbiology</subject><subject>Waterways</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkU1v1DAQhi1ERUvhyhFF4sJlt2MntuMLEqr4qNSKC5wtrzNpvCR2sJNW_fc43WXVVj1wsqX3Y8Z-CHlHYU2hrM9cGnC7ZkD5mtH6BTmhktOVLCW8PNwFOyavU9oCcCmEfEWOmRCl4JydkHTlbAwbZ_rChmGYvZscpiJi26OdigmHMcRF7Iy_zoLzhb0zPmyMnTDuY2NIORb8opoidabvw22BY4cDLuE2YupuTQ4UvfmNb8hRa_qEb_fnKfn19cvP8--ryx_fLs4_X65spei0wpI20LK2YsIC2obzljcMVJO3r7lkTQ2m4qw1HKAUCBKUVOWmNkgpQiXLU_Jp1zvOmwEbi37K2-gxusHEOx2M048V7zp9HW40B6aoYrng474ghj8zpkkPLlnse-MxzElTqapKCSH4f1hrJQUIBtn64Yl1G-bo80_cuxilql5mr3eujCelzOOwNwW9oNf36PWCXmf0OfD-4WsP9n-ss-FsZ0hZyjDjg7nPV_4FUJe8ig</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Woodhouse, Jason Nicholas</creator><creator>Kinsela, Andrew Stephen</creator><creator>Collins, Richard Nicholas</creator><creator>Bowling, Lee Chester</creator><creator>Honeyman, Gordon L</creator><creator>Holliday, Jon K</creator><creator>Neilan, Brett Anthony</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160601</creationdate><title>Microbial communities reflect temporal changes in cyanobacterial composition in a shallow ephemeral freshwater lake</title><author>Woodhouse, Jason Nicholas ; Kinsela, Andrew Stephen ; Collins, Richard Nicholas ; Bowling, Lee Chester ; Honeyman, Gordon L ; Holliday, Jon K ; Neilan, Brett Anthony</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-e31d0f2f426c0ecd55f5d209d2668572d80a452fa50036e0709793b8ae11e0473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>45/47</topic><topic>45/77</topic><topic>631/326/171/1878</topic><topic>631/326/2565/855</topic><topic>Actinobacteria</topic><topic>Australia</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacteria - growth &amp; development</topic><topic>Biodiversity</topic><topic>Biomedical and Life Sciences</topic><topic>Biotic factors</topic><topic>Climate Change</topic><topic>Community composition</topic><topic>Cyanobacteria</topic><topic>Cyanobacteria - classification</topic><topic>Cyanobacteria - genetics</topic><topic>Cyanobacteria - growth &amp; development</topic><topic>Diversity indices</topic><topic>Ecology</topic><topic>Ephemeral lakes</topic><topic>Eutrophication</topic><topic>Evolutionary Biology</topic><topic>Fresh water</topic><topic>Fresh Water - microbiology</topic><topic>Freshwater lakes</topic><topic>Lakes - microbiology</topic><topic>Life Sciences</topic><topic>Microbial activity</topic><topic>Microbial Consortia</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microcystis</topic><topic>Multivariate analysis</topic><topic>Nutrient cycles</topic><topic>Original</topic><topic>original-article</topic><topic>Oscillatoria</topic><topic>Planctomyces</topic><topic>Plankton - classification</topic><topic>Plankton - genetics</topic><topic>Plankton - growth &amp; development</topic><topic>Seasons</topic><topic>Species Specificity</topic><topic>Verrucomicrobia</topic><topic>Water Microbiology</topic><topic>Waterways</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woodhouse, Jason Nicholas</creatorcontrib><creatorcontrib>Kinsela, Andrew Stephen</creatorcontrib><creatorcontrib>Collins, Richard Nicholas</creatorcontrib><creatorcontrib>Bowling, Lee Chester</creatorcontrib><creatorcontrib>Honeyman, Gordon L</creatorcontrib><creatorcontrib>Holliday, Jon K</creatorcontrib><creatorcontrib>Neilan, Brett Anthony</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woodhouse, Jason Nicholas</au><au>Kinsela, Andrew Stephen</au><au>Collins, Richard Nicholas</au><au>Bowling, Lee Chester</au><au>Honeyman, Gordon L</au><au>Holliday, Jon K</au><au>Neilan, Brett Anthony</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial communities reflect temporal changes in cyanobacterial composition in a shallow ephemeral freshwater lake</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>10</volume><issue>6</issue><spage>1337</spage><epage>1351</epage><pages>1337-1351</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>The frequency of freshwater cyanobacterial blooms is at risk of increasing as a consequence of climate change and eutrophication of waterways. It is increasingly apparent that abiotic data are insufficient to explain variability within the cyanobacterial community, with biotic factors such as heterotrophic bacterioplankton, viruses and protists emerging as critical drivers. During the Australian summer of 2012–2013, a bloom that occurred in a shallow ephemeral lake over a 6-month period was comprised of 22 distinct cyanobacteria, including Microcystis, Dolichospermum , Oscillatoria and Sphaerospermopsis . Cyanobacterial cell densities, bacterial community composition and abiotic parameters were assessed over this period. Alpha-diversity indices and multivariate analysis were successful at differentiating three distinct bloom phases and the contribution of abiotic parameters to each. Network analysis, assessing correlations between biotic and abiotic variables, reproduced these phases and assessed the relative importance of both abiotic and biotic factors. Variables possessing elevated betweeness centrality included temperature, sodium and operational taxonomic units belonging to the phyla Verrucomicrobia, Planctomyces, Bacteroidetes and Actinobacteria. Species-specific associations between cyanobacteria and bacterioplankton, including the free-living Actinobacteria acI, Bacteroidetes, Betaproteobacteria and Verrucomicrobia, were also identified. We concluded that changes in the abundance and nature of freshwater cyanobacteria are associated with changes in the diversity and composition of lake bacterioplankton. Given this, an increase in the frequency of cyanobacteria blooms has the potential to alter nutrient cycling and contribute to long-term functional perturbation of freshwater systems.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26636552</pmid><doi>10.1038/ismej.2015.218</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-7362
ispartof The ISME Journal, 2016-06, Vol.10 (6), p.1337-1351
issn 1751-7362
1751-7370
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5029192
source Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects 45/47
45/77
631/326/171/1878
631/326/2565/855
Actinobacteria
Australia
Bacteria - classification
Bacteria - genetics
Bacteria - growth & development
Biodiversity
Biomedical and Life Sciences
Biotic factors
Climate Change
Community composition
Cyanobacteria
Cyanobacteria - classification
Cyanobacteria - genetics
Cyanobacteria - growth & development
Diversity indices
Ecology
Ephemeral lakes
Eutrophication
Evolutionary Biology
Fresh water
Fresh Water - microbiology
Freshwater lakes
Lakes - microbiology
Life Sciences
Microbial activity
Microbial Consortia
Microbial Ecology
Microbial Genetics and Genomics
Microbiology
Microcystis
Multivariate analysis
Nutrient cycles
Original
original-article
Oscillatoria
Planctomyces
Plankton - classification
Plankton - genetics
Plankton - growth & development
Seasons
Species Specificity
Verrucomicrobia
Water Microbiology
Waterways
title Microbial communities reflect temporal changes in cyanobacterial composition in a shallow ephemeral freshwater lake
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T05%3A20%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20communities%20reflect%20temporal%20changes%20in%20cyanobacterial%20composition%20in%20a%20shallow%20ephemeral%20freshwater%20lake&rft.jtitle=The%20ISME%20Journal&rft.au=Woodhouse,%20Jason%20Nicholas&rft.date=2016-06-01&rft.volume=10&rft.issue=6&rft.spage=1337&rft.epage=1351&rft.pages=1337-1351&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/ismej.2015.218&rft_dat=%3Cproquest_pubme%3E4058025731%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1789211982&rft_id=info:pmid/26636552&rfr_iscdi=true