The synthetic xylulose-1 phosphate pathway increases production of glycolic acid from xylose-rich sugar mixtures

Glycolic acid (GA) is a two-carbon hydroxyacid with applications in the cosmetic, textile, and medical industry. Microbial GA production from all sugars can be achieved by engineering the natural glyoxylate shunt. The synthetic (d)-xylulose-1 phosphate (X1P) pathway provides a complementary route to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology for biofuels 2016-09, Vol.9 (1), p.201-201, Article 201
Hauptverfasser: Alkim, Ceren, Trichez, Debora, Cam, Yvan, Spina, Lucie, François, Jean Marie, Walther, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 201
container_issue 1
container_start_page 201
container_title Biotechnology for biofuels
container_volume 9
creator Alkim, Ceren
Trichez, Debora
Cam, Yvan
Spina, Lucie
François, Jean Marie
Walther, Thomas
description Glycolic acid (GA) is a two-carbon hydroxyacid with applications in the cosmetic, textile, and medical industry. Microbial GA production from all sugars can be achieved by engineering the natural glyoxylate shunt. The synthetic (d)-xylulose-1 phosphate (X1P) pathway provides a complementary route to produce GA from (d)-xylose. The simultaneous operation of the X1P and glyoxylate pathways increases the theoretical GA yield from xylose by 20 %, which may strongly improve GA production from hemicellulosic hydrolysates. We herein describe the construction of an E. coli strain that produces GA via the glyoxylate pathway at a yield of 0.31 , 0.29 , and 0.37 g/g from glucose, xylose, or a mixture of glucose and xylose (mass ratio: 33:66 %), respectively. When the X1P pathway operates in addition to the glyoxylate pathway, the GA yields on the three substrates are, respectively, 0.39 , 0.43 , and 0.47 g/g. Upon constitutive expression of the sugar permease GalP, the GA yield of the strain which simultaneously operates the glyoxylate and X1P pathways further increases to 0.63 g/g when growing on the glucose/xylose mixture. Under these conditions, the GA yield on the xylose fraction of the sugar mixture reaches 0.75 g/g, which is the highest yield reported to date. These results demonstrate that the synthetic X1P pathway has a very strong potential to improve GA production from xylose-rich hemicellulosic hydrolysates.
doi_str_mv 10.1186/s13068-016-0610-2
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5029101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A464260709</galeid><sourcerecordid>A464260709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-4a474cfa5efd5907acfcc4d5dfb6bcf8b14bb4e3e54b47fe18c953a6f2ae25e93</originalsourceid><addsrcrecordid>eNpdks1u1DAUhSMEoqXwAGyQJTZ0kWIn_kk2SKOK0kojIUFZW45zPXGVxMF2yszb4yhDaSsvbF1_5_he62TZe4IvCKn450BKzKscE55jTnBevMhOiWA051VJXz46n2RvQrjDCRJYvM5OCsFFzXl9mk23HaBwGGMH0Wq0P_Rz7wLkBE2dC1OnIqBJxe6POiA7ag8qQECTd-2so3Ujcgbt-oN2fVIrbVtkvBsWn8XFW92hMO-UR4Pdx9lDeJu9MqoP8O64n2W_rr7eXl7n2-_fbi4321yzksacKiqoNoqBaVmNhdJGa9qy1jS80aZqCG0aCiUw2lBhgFS6ZqXiplBQMKjLs-zL6jvNzQCthjF61cvJ20H5g3TKyqc3o-3kzt1LhouaYJIMzleD7pnserOVSw2TquKU0PuF_XR8zLvfM4QoBxs09L0awc1BkqqgjDJCq4R-fIbeudmP6SsWihWiFLhM1MVK7VQP0o7GpR51Wi0MVrsRjE31DeW04Fjg-n-3R0FiIuzjTs0hyJufP56yZGW1dyF4MA_jESyXYMk1WGlCLpdgySJpPjz-zgfFvySVfwFsi8sq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825273703</pqid></control><display><type>article</type><title>The synthetic xylulose-1 phosphate pathway increases production of glycolic acid from xylose-rich sugar mixtures</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Alkim, Ceren ; Trichez, Debora ; Cam, Yvan ; Spina, Lucie ; François, Jean Marie ; Walther, Thomas</creator><creatorcontrib>Alkim, Ceren ; Trichez, Debora ; Cam, Yvan ; Spina, Lucie ; François, Jean Marie ; Walther, Thomas</creatorcontrib><description>Glycolic acid (GA) is a two-carbon hydroxyacid with applications in the cosmetic, textile, and medical industry. Microbial GA production from all sugars can be achieved by engineering the natural glyoxylate shunt. The synthetic (d)-xylulose-1 phosphate (X1P) pathway provides a complementary route to produce GA from (d)-xylose. The simultaneous operation of the X1P and glyoxylate pathways increases the theoretical GA yield from xylose by 20 %, which may strongly improve GA production from hemicellulosic hydrolysates. We herein describe the construction of an E. coli strain that produces GA via the glyoxylate pathway at a yield of 0.31 , 0.29 , and 0.37 g/g from glucose, xylose, or a mixture of glucose and xylose (mass ratio: 33:66 %), respectively. When the X1P pathway operates in addition to the glyoxylate pathway, the GA yields on the three substrates are, respectively, 0.39 , 0.43 , and 0.47 g/g. Upon constitutive expression of the sugar permease GalP, the GA yield of the strain which simultaneously operates the glyoxylate and X1P pathways further increases to 0.63 g/g when growing on the glucose/xylose mixture. Under these conditions, the GA yield on the xylose fraction of the sugar mixture reaches 0.75 g/g, which is the highest yield reported to date. These results demonstrate that the synthetic X1P pathway has a very strong potential to improve GA production from xylose-rich hemicellulosic hydrolysates.</description><identifier>ISSN: 1754-6834</identifier><identifier>EISSN: 1754-6834</identifier><identifier>DOI: 10.1186/s13068-016-0610-2</identifier><identifier>PMID: 27679669</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Acids ; Carbon ; Cell metabolism ; Dehydrogenases ; E coli ; Engineering ; Escherichia coli ; Ethanol ; Genes ; Life Sciences ; Metabolism ; Microorganisms ; Physiological aspects ; Polymers ; Yeast</subject><ispartof>Biotechnology for biofuels, 2016-09, Vol.9 (1), p.201-201, Article 201</ispartof><rights>COPYRIGHT 2016 BioMed Central Ltd.</rights><rights>Copyright BioMed Central 2016</rights><rights>Attribution</rights><rights>The Author(s) 2016</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-4a474cfa5efd5907acfcc4d5dfb6bcf8b14bb4e3e54b47fe18c953a6f2ae25e93</citedby><cites>FETCH-LOGICAL-c534t-4a474cfa5efd5907acfcc4d5dfb6bcf8b14bb4e3e54b47fe18c953a6f2ae25e93</cites><orcidid>0000-0002-5918-142X ; 0000-0001-9884-5535</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5029101/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5029101/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27679669$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01886414$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Alkim, Ceren</creatorcontrib><creatorcontrib>Trichez, Debora</creatorcontrib><creatorcontrib>Cam, Yvan</creatorcontrib><creatorcontrib>Spina, Lucie</creatorcontrib><creatorcontrib>François, Jean Marie</creatorcontrib><creatorcontrib>Walther, Thomas</creatorcontrib><title>The synthetic xylulose-1 phosphate pathway increases production of glycolic acid from xylose-rich sugar mixtures</title><title>Biotechnology for biofuels</title><addtitle>Biotechnol Biofuels</addtitle><description>Glycolic acid (GA) is a two-carbon hydroxyacid with applications in the cosmetic, textile, and medical industry. Microbial GA production from all sugars can be achieved by engineering the natural glyoxylate shunt. The synthetic (d)-xylulose-1 phosphate (X1P) pathway provides a complementary route to produce GA from (d)-xylose. The simultaneous operation of the X1P and glyoxylate pathways increases the theoretical GA yield from xylose by 20 %, which may strongly improve GA production from hemicellulosic hydrolysates. We herein describe the construction of an E. coli strain that produces GA via the glyoxylate pathway at a yield of 0.31 , 0.29 , and 0.37 g/g from glucose, xylose, or a mixture of glucose and xylose (mass ratio: 33:66 %), respectively. When the X1P pathway operates in addition to the glyoxylate pathway, the GA yields on the three substrates are, respectively, 0.39 , 0.43 , and 0.47 g/g. Upon constitutive expression of the sugar permease GalP, the GA yield of the strain which simultaneously operates the glyoxylate and X1P pathways further increases to 0.63 g/g when growing on the glucose/xylose mixture. Under these conditions, the GA yield on the xylose fraction of the sugar mixture reaches 0.75 g/g, which is the highest yield reported to date. These results demonstrate that the synthetic X1P pathway has a very strong potential to improve GA production from xylose-rich hemicellulosic hydrolysates.</description><subject>Acids</subject><subject>Carbon</subject><subject>Cell metabolism</subject><subject>Dehydrogenases</subject><subject>E coli</subject><subject>Engineering</subject><subject>Escherichia coli</subject><subject>Ethanol</subject><subject>Genes</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Microorganisms</subject><subject>Physiological aspects</subject><subject>Polymers</subject><subject>Yeast</subject><issn>1754-6834</issn><issn>1754-6834</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdks1u1DAUhSMEoqXwAGyQJTZ0kWIn_kk2SKOK0kojIUFZW45zPXGVxMF2yszb4yhDaSsvbF1_5_he62TZe4IvCKn450BKzKscE55jTnBevMhOiWA051VJXz46n2RvQrjDCRJYvM5OCsFFzXl9mk23HaBwGGMH0Wq0P_Rz7wLkBE2dC1OnIqBJxe6POiA7ag8qQECTd-2so3Ujcgbt-oN2fVIrbVtkvBsWn8XFW92hMO-UR4Pdx9lDeJu9MqoP8O64n2W_rr7eXl7n2-_fbi4321yzksacKiqoNoqBaVmNhdJGa9qy1jS80aZqCG0aCiUw2lBhgFS6ZqXiplBQMKjLs-zL6jvNzQCthjF61cvJ20H5g3TKyqc3o-3kzt1LhouaYJIMzleD7pnserOVSw2TquKU0PuF_XR8zLvfM4QoBxs09L0awc1BkqqgjDJCq4R-fIbeudmP6SsWihWiFLhM1MVK7VQP0o7GpR51Wi0MVrsRjE31DeW04Fjg-n-3R0FiIuzjTs0hyJufP56yZGW1dyF4MA_jESyXYMk1WGlCLpdgySJpPjz-zgfFvySVfwFsi8sq</recordid><startdate>20160920</startdate><enddate>20160920</enddate><creator>Alkim, Ceren</creator><creator>Trichez, Debora</creator><creator>Cam, Yvan</creator><creator>Spina, Lucie</creator><creator>François, Jean Marie</creator><creator>Walther, Thomas</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5918-142X</orcidid><orcidid>https://orcid.org/0000-0001-9884-5535</orcidid></search><sort><creationdate>20160920</creationdate><title>The synthetic xylulose-1 phosphate pathway increases production of glycolic acid from xylose-rich sugar mixtures</title><author>Alkim, Ceren ; Trichez, Debora ; Cam, Yvan ; Spina, Lucie ; François, Jean Marie ; Walther, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-4a474cfa5efd5907acfcc4d5dfb6bcf8b14bb4e3e54b47fe18c953a6f2ae25e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acids</topic><topic>Carbon</topic><topic>Cell metabolism</topic><topic>Dehydrogenases</topic><topic>E coli</topic><topic>Engineering</topic><topic>Escherichia coli</topic><topic>Ethanol</topic><topic>Genes</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Microorganisms</topic><topic>Physiological aspects</topic><topic>Polymers</topic><topic>Yeast</topic><toplevel>online_resources</toplevel><creatorcontrib>Alkim, Ceren</creatorcontrib><creatorcontrib>Trichez, Debora</creatorcontrib><creatorcontrib>Cam, Yvan</creatorcontrib><creatorcontrib>Spina, Lucie</creatorcontrib><creatorcontrib>François, Jean Marie</creatorcontrib><creatorcontrib>Walther, Thomas</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biotechnology for biofuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alkim, Ceren</au><au>Trichez, Debora</au><au>Cam, Yvan</au><au>Spina, Lucie</au><au>François, Jean Marie</au><au>Walther, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The synthetic xylulose-1 phosphate pathway increases production of glycolic acid from xylose-rich sugar mixtures</atitle><jtitle>Biotechnology for biofuels</jtitle><addtitle>Biotechnol Biofuels</addtitle><date>2016-09-20</date><risdate>2016</risdate><volume>9</volume><issue>1</issue><spage>201</spage><epage>201</epage><pages>201-201</pages><artnum>201</artnum><issn>1754-6834</issn><eissn>1754-6834</eissn><abstract>Glycolic acid (GA) is a two-carbon hydroxyacid with applications in the cosmetic, textile, and medical industry. Microbial GA production from all sugars can be achieved by engineering the natural glyoxylate shunt. The synthetic (d)-xylulose-1 phosphate (X1P) pathway provides a complementary route to produce GA from (d)-xylose. The simultaneous operation of the X1P and glyoxylate pathways increases the theoretical GA yield from xylose by 20 %, which may strongly improve GA production from hemicellulosic hydrolysates. We herein describe the construction of an E. coli strain that produces GA via the glyoxylate pathway at a yield of 0.31 , 0.29 , and 0.37 g/g from glucose, xylose, or a mixture of glucose and xylose (mass ratio: 33:66 %), respectively. When the X1P pathway operates in addition to the glyoxylate pathway, the GA yields on the three substrates are, respectively, 0.39 , 0.43 , and 0.47 g/g. Upon constitutive expression of the sugar permease GalP, the GA yield of the strain which simultaneously operates the glyoxylate and X1P pathways further increases to 0.63 g/g when growing on the glucose/xylose mixture. Under these conditions, the GA yield on the xylose fraction of the sugar mixture reaches 0.75 g/g, which is the highest yield reported to date. These results demonstrate that the synthetic X1P pathway has a very strong potential to improve GA production from xylose-rich hemicellulosic hydrolysates.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>27679669</pmid><doi>10.1186/s13068-016-0610-2</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5918-142X</orcidid><orcidid>https://orcid.org/0000-0001-9884-5535</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1754-6834
ispartof Biotechnology for biofuels, 2016-09, Vol.9 (1), p.201-201, Article 201
issn 1754-6834
1754-6834
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5029101
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; PubMed Central; Free Full-Text Journals in Chemistry
subjects Acids
Carbon
Cell metabolism
Dehydrogenases
E coli
Engineering
Escherichia coli
Ethanol
Genes
Life Sciences
Metabolism
Microorganisms
Physiological aspects
Polymers
Yeast
title The synthetic xylulose-1 phosphate pathway increases production of glycolic acid from xylose-rich sugar mixtures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A16%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20synthetic%20xylulose-1%20phosphate%20pathway%20increases%20production%20of%20glycolic%20acid%20from%20xylose-rich%20sugar%20mixtures&rft.jtitle=Biotechnology%20for%20biofuels&rft.au=Alkim,%20Ceren&rft.date=2016-09-20&rft.volume=9&rft.issue=1&rft.spage=201&rft.epage=201&rft.pages=201-201&rft.artnum=201&rft.issn=1754-6834&rft.eissn=1754-6834&rft_id=info:doi/10.1186/s13068-016-0610-2&rft_dat=%3Cgale_pubme%3EA464260709%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825273703&rft_id=info:pmid/27679669&rft_galeid=A464260709&rfr_iscdi=true