NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity
Jun Yang and colleagues perform targeted sequencing of NUDT15 and identify loss-of-function variants associated with thiopurine intolerance. Functionally, they show that NUDT15 inactivates thiopurine metabolites, providing a mechanism to explain the association between NUDT15 loss-of-function varian...
Gespeichert in:
Veröffentlicht in: | Nature genetics 2016-04, Vol.48 (4), p.367-373 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 373 |
---|---|
container_issue | 4 |
container_start_page | 367 |
container_title | Nature genetics |
container_volume | 48 |
creator | Moriyama, Takaya Nishii, Rina Perez-Andreu, Virginia Yang, Wenjian Klussmann, Federico Antillon Zhao, Xujie Lin, Ting-Nien Hoshitsuki, Keito Nersting, Jacob Kihira, Kentaro Hofmann, Ute Komada, Yoshihiro Kato, Motohiro McCorkle, Robert Li, Lie Koh, Katsuyoshi Najera, Cesar Rolando Kham, Shirley Kow-Yin Isobe, Tomoya Chen, Zhiwei Chiew, Edwynn Kean-Hui Bhojwani, Deepa Jeffries, Cynthia Lu, Yan Schwab, Matthias Inaba, Hiroto Pui, Ching-Hon Relling, Mary V Manabe, Atsushi Hori, Hiroki Schmiegelow, Kjeld Yeoh, Allen E J Evans, William E Yang, Jun J |
description | Jun Yang and colleagues perform targeted sequencing of
NUDT15
and identify loss-of-function variants associated with thiopurine intolerance. Functionally, they show that NUDT15 inactivates thiopurine metabolites, providing a mechanism to explain the association between
NUDT15
loss-of-function variants and thiopurine toxicity.
Widely used as anticancer and immunosuppressive agents, thiopurines have narrow therapeutic indices owing to frequent toxicities, partly explained by
TPMT
genetic polymorphisms. Recent studies identified germline
NUDT15
variation as another critical determinant of thiopurine intolerance, but the underlying molecular mechanisms and the clinical implications of this pharmacogenetic association remain unknown. In 270 children enrolled in clinical trials for acute lymphoblastic leukemia in Guatemala, Singapore and Japan, we identified four
NUDT15
coding variants (p.Arg139Cys, p.Arg139His, p.Val18Ile and p.Val18_Val19insGlyVal) that resulted in 74.4–100% loss of nucleotide diphosphatase activity. Loss-of-function
NUDT15
diplotypes were consistently associated with thiopurine intolerance across the three cohorts (
P
= 0.021, 2.1 × 10
−5
and 0.0054, respectively; meta-analysis
P
= 4.45 × 10
−8
, allelic effect size = −11.5). Mechanistically, NUDT15 inactivated thiopurine metabolites and decreased thiopurine cytotoxicity
in vitro
, and patients with defective
NUDT15
alleles showed excessive levels of thiopurine active metabolites and toxicity. Taken together, these results indicate that a comprehensive pharmacogenetic model integrating
NUDT15
variants may inform personalized thiopurine therapy. |
doi_str_mv | 10.1038/ng.3508 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5029084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A450362591</galeid><sourcerecordid>A450362591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c664t-a623dbfc2f81287d99e42e8f9155f198eb9aa361de5fe667dd952a5157865e793</originalsourceid><addsrcrecordid>eNqNkktv1DAUhSMEoqUg_gGKxAJYZLAdPzeVqhZKRUUlaNlanuQm4yqxg-1UnX-PR31OxQJ5Ycvnu-fKx7co3mK0wKiWn12_qBmSz4pdzCivsMDyeT4jjiuKar5TvIrxEiFMKZIvix3CpZCC0N3i-4-Lo3PMyskP69GHaWXjGEszJAhlWlk_zcE6KEdIZumHLJbGteUKRpP85C0k25TJX9vGpvXr4kVnhghvbve94uLrl_PDb9Xp2fHJ4cFp1XBOU2U4qdtl15BOYiJFqxRQArJTmLEOKwlLZUzNcQusA85F2ypGDMNMSM5AqHqv2L_xneblCG0DLgUz6CnY0YS19sbqbcXZle79lWaIKCRpNvh4axD8nxli0qONDQyDceDnqLFEUlDECM7o-yfopZ-Dy8_TWEhEJWaqfqB6M4C2rvO5b7Mx1QeU5Q8gTG28Fv-g8mphtI130Nl8v1XwaasgMwmuU2_mGPXJr5__z5793mY_3LBN8DEG6O6zw0hv5km7Xm_mKZPvHkd9z90N0EOUMUuuh_AonydefwFwJtA0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1780481593</pqid></control><display><type>article</type><title>NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Moriyama, Takaya ; Nishii, Rina ; Perez-Andreu, Virginia ; Yang, Wenjian ; Klussmann, Federico Antillon ; Zhao, Xujie ; Lin, Ting-Nien ; Hoshitsuki, Keito ; Nersting, Jacob ; Kihira, Kentaro ; Hofmann, Ute ; Komada, Yoshihiro ; Kato, Motohiro ; McCorkle, Robert ; Li, Lie ; Koh, Katsuyoshi ; Najera, Cesar Rolando ; Kham, Shirley Kow-Yin ; Isobe, Tomoya ; Chen, Zhiwei ; Chiew, Edwynn Kean-Hui ; Bhojwani, Deepa ; Jeffries, Cynthia ; Lu, Yan ; Schwab, Matthias ; Inaba, Hiroto ; Pui, Ching-Hon ; Relling, Mary V ; Manabe, Atsushi ; Hori, Hiroki ; Schmiegelow, Kjeld ; Yeoh, Allen E J ; Evans, William E ; Yang, Jun J</creator><creatorcontrib>Moriyama, Takaya ; Nishii, Rina ; Perez-Andreu, Virginia ; Yang, Wenjian ; Klussmann, Federico Antillon ; Zhao, Xujie ; Lin, Ting-Nien ; Hoshitsuki, Keito ; Nersting, Jacob ; Kihira, Kentaro ; Hofmann, Ute ; Komada, Yoshihiro ; Kato, Motohiro ; McCorkle, Robert ; Li, Lie ; Koh, Katsuyoshi ; Najera, Cesar Rolando ; Kham, Shirley Kow-Yin ; Isobe, Tomoya ; Chen, Zhiwei ; Chiew, Edwynn Kean-Hui ; Bhojwani, Deepa ; Jeffries, Cynthia ; Lu, Yan ; Schwab, Matthias ; Inaba, Hiroto ; Pui, Ching-Hon ; Relling, Mary V ; Manabe, Atsushi ; Hori, Hiroki ; Schmiegelow, Kjeld ; Yeoh, Allen E J ; Evans, William E ; Yang, Jun J</creatorcontrib><description>Jun Yang and colleagues perform targeted sequencing of
NUDT15
and identify loss-of-function variants associated with thiopurine intolerance. Functionally, they show that NUDT15 inactivates thiopurine metabolites, providing a mechanism to explain the association between
NUDT15
loss-of-function variants and thiopurine toxicity.
Widely used as anticancer and immunosuppressive agents, thiopurines have narrow therapeutic indices owing to frequent toxicities, partly explained by
TPMT
genetic polymorphisms. Recent studies identified germline
NUDT15
variation as another critical determinant of thiopurine intolerance, but the underlying molecular mechanisms and the clinical implications of this pharmacogenetic association remain unknown. In 270 children enrolled in clinical trials for acute lymphoblastic leukemia in Guatemala, Singapore and Japan, we identified four
NUDT15
coding variants (p.Arg139Cys, p.Arg139His, p.Val18Ile and p.Val18_Val19insGlyVal) that resulted in 74.4–100% loss of nucleotide diphosphatase activity. Loss-of-function
NUDT15
diplotypes were consistently associated with thiopurine intolerance across the three cohorts (
P
= 0.021, 2.1 × 10
−5
and 0.0054, respectively; meta-analysis
P
= 4.45 × 10
−8
, allelic effect size = −11.5). Mechanistically, NUDT15 inactivated thiopurine metabolites and decreased thiopurine cytotoxicity
in vitro
, and patients with defective
NUDT15
alleles showed excessive levels of thiopurine active metabolites and toxicity. Taken together, these results indicate that a comprehensive pharmacogenetic model integrating
NUDT15
variants may inform personalized thiopurine therapy.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/ng.3508</identifier><identifier>PMID: 26878724</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>45/23 ; 631/208/205 ; 692/308/575 ; 82/1 ; 82/29 ; 82/83 ; Agriculture ; Animal Genetics and Genomics ; Antimetabolites, Antineoplastic - adverse effects ; Antimetabolites, Antineoplastic - therapeutic use ; Biomedicine ; Cancer ; Cancer Research ; Children & youth ; Clinical trials ; Consortia ; Cytotoxicity ; Deoxyribonucleic acid ; DNA ; Drug dosages ; Drug metabolism ; Gene Function ; Genes ; Genetic aspects ; Genetic Association Studies ; Genetic polymorphisms ; Genomes ; Haplotypes ; Health aspects ; Hematopoiesis - drug effects ; Hospitals ; Human Genetics ; Humans ; Leukemia ; Lymphoma ; Medical research ; Mercaptopurine - adverse effects ; Mercaptopurine - therapeutic use ; Metabolism ; Metabolites ; Pediatrics ; Polymorphism, Single Nucleotide ; Precursor Cell Lymphoblastic Leukemia-Lymphoma - drug therapy ; Properties ; Proteins ; Purines ; Pyrophosphatases - genetics ; Pyrophosphatases - metabolism ; Studies ; Toxicity</subject><ispartof>Nature genetics, 2016-04, Vol.48 (4), p.367-373</ispartof><rights>Springer Nature America, Inc. 2016</rights><rights>COPYRIGHT 2016 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Apr 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c664t-a623dbfc2f81287d99e42e8f9155f198eb9aa361de5fe667dd952a5157865e793</citedby><cites>FETCH-LOGICAL-c664t-a623dbfc2f81287d99e42e8f9155f198eb9aa361de5fe667dd952a5157865e793</cites><orcidid>0000-0001-7213-2270 ; 0000-0002-0770-9659</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ng.3508$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ng.3508$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26878724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moriyama, Takaya</creatorcontrib><creatorcontrib>Nishii, Rina</creatorcontrib><creatorcontrib>Perez-Andreu, Virginia</creatorcontrib><creatorcontrib>Yang, Wenjian</creatorcontrib><creatorcontrib>Klussmann, Federico Antillon</creatorcontrib><creatorcontrib>Zhao, Xujie</creatorcontrib><creatorcontrib>Lin, Ting-Nien</creatorcontrib><creatorcontrib>Hoshitsuki, Keito</creatorcontrib><creatorcontrib>Nersting, Jacob</creatorcontrib><creatorcontrib>Kihira, Kentaro</creatorcontrib><creatorcontrib>Hofmann, Ute</creatorcontrib><creatorcontrib>Komada, Yoshihiro</creatorcontrib><creatorcontrib>Kato, Motohiro</creatorcontrib><creatorcontrib>McCorkle, Robert</creatorcontrib><creatorcontrib>Li, Lie</creatorcontrib><creatorcontrib>Koh, Katsuyoshi</creatorcontrib><creatorcontrib>Najera, Cesar Rolando</creatorcontrib><creatorcontrib>Kham, Shirley Kow-Yin</creatorcontrib><creatorcontrib>Isobe, Tomoya</creatorcontrib><creatorcontrib>Chen, Zhiwei</creatorcontrib><creatorcontrib>Chiew, Edwynn Kean-Hui</creatorcontrib><creatorcontrib>Bhojwani, Deepa</creatorcontrib><creatorcontrib>Jeffries, Cynthia</creatorcontrib><creatorcontrib>Lu, Yan</creatorcontrib><creatorcontrib>Schwab, Matthias</creatorcontrib><creatorcontrib>Inaba, Hiroto</creatorcontrib><creatorcontrib>Pui, Ching-Hon</creatorcontrib><creatorcontrib>Relling, Mary V</creatorcontrib><creatorcontrib>Manabe, Atsushi</creatorcontrib><creatorcontrib>Hori, Hiroki</creatorcontrib><creatorcontrib>Schmiegelow, Kjeld</creatorcontrib><creatorcontrib>Yeoh, Allen E J</creatorcontrib><creatorcontrib>Evans, William E</creatorcontrib><creatorcontrib>Yang, Jun J</creatorcontrib><title>NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Jun Yang and colleagues perform targeted sequencing of
NUDT15
and identify loss-of-function variants associated with thiopurine intolerance. Functionally, they show that NUDT15 inactivates thiopurine metabolites, providing a mechanism to explain the association between
NUDT15
loss-of-function variants and thiopurine toxicity.
Widely used as anticancer and immunosuppressive agents, thiopurines have narrow therapeutic indices owing to frequent toxicities, partly explained by
TPMT
genetic polymorphisms. Recent studies identified germline
NUDT15
variation as another critical determinant of thiopurine intolerance, but the underlying molecular mechanisms and the clinical implications of this pharmacogenetic association remain unknown. In 270 children enrolled in clinical trials for acute lymphoblastic leukemia in Guatemala, Singapore and Japan, we identified four
NUDT15
coding variants (p.Arg139Cys, p.Arg139His, p.Val18Ile and p.Val18_Val19insGlyVal) that resulted in 74.4–100% loss of nucleotide diphosphatase activity. Loss-of-function
NUDT15
diplotypes were consistently associated with thiopurine intolerance across the three cohorts (
P
= 0.021, 2.1 × 10
−5
and 0.0054, respectively; meta-analysis
P
= 4.45 × 10
−8
, allelic effect size = −11.5). Mechanistically, NUDT15 inactivated thiopurine metabolites and decreased thiopurine cytotoxicity
in vitro
, and patients with defective
NUDT15
alleles showed excessive levels of thiopurine active metabolites and toxicity. Taken together, these results indicate that a comprehensive pharmacogenetic model integrating
NUDT15
variants may inform personalized thiopurine therapy.</description><subject>45/23</subject><subject>631/208/205</subject><subject>692/308/575</subject><subject>82/1</subject><subject>82/29</subject><subject>82/83</subject><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Antimetabolites, Antineoplastic - adverse effects</subject><subject>Antimetabolites, Antineoplastic - therapeutic use</subject><subject>Biomedicine</subject><subject>Cancer</subject><subject>Cancer Research</subject><subject>Children & youth</subject><subject>Clinical trials</subject><subject>Consortia</subject><subject>Cytotoxicity</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Drug dosages</subject><subject>Drug metabolism</subject><subject>Gene Function</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic Association Studies</subject><subject>Genetic polymorphisms</subject><subject>Genomes</subject><subject>Haplotypes</subject><subject>Health aspects</subject><subject>Hematopoiesis - drug effects</subject><subject>Hospitals</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Leukemia</subject><subject>Lymphoma</subject><subject>Medical research</subject><subject>Mercaptopurine - adverse effects</subject><subject>Mercaptopurine - therapeutic use</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Pediatrics</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Precursor Cell Lymphoblastic Leukemia-Lymphoma - drug therapy</subject><subject>Properties</subject><subject>Proteins</subject><subject>Purines</subject><subject>Pyrophosphatases - genetics</subject><subject>Pyrophosphatases - metabolism</subject><subject>Studies</subject><subject>Toxicity</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkktv1DAUhSMEoqUg_gGKxAJYZLAdPzeVqhZKRUUlaNlanuQm4yqxg-1UnX-PR31OxQJ5Ycvnu-fKx7co3mK0wKiWn12_qBmSz4pdzCivsMDyeT4jjiuKar5TvIrxEiFMKZIvix3CpZCC0N3i-4-Lo3PMyskP69GHaWXjGEszJAhlWlk_zcE6KEdIZumHLJbGteUKRpP85C0k25TJX9vGpvXr4kVnhghvbve94uLrl_PDb9Xp2fHJ4cFp1XBOU2U4qdtl15BOYiJFqxRQArJTmLEOKwlLZUzNcQusA85F2ypGDMNMSM5AqHqv2L_xneblCG0DLgUz6CnY0YS19sbqbcXZle79lWaIKCRpNvh4axD8nxli0qONDQyDceDnqLFEUlDECM7o-yfopZ-Dy8_TWEhEJWaqfqB6M4C2rvO5b7Mx1QeU5Q8gTG28Fv-g8mphtI130Nl8v1XwaasgMwmuU2_mGPXJr5__z5793mY_3LBN8DEG6O6zw0hv5km7Xm_mKZPvHkd9z90N0EOUMUuuh_AonydefwFwJtA0</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Moriyama, Takaya</creator><creator>Nishii, Rina</creator><creator>Perez-Andreu, Virginia</creator><creator>Yang, Wenjian</creator><creator>Klussmann, Federico Antillon</creator><creator>Zhao, Xujie</creator><creator>Lin, Ting-Nien</creator><creator>Hoshitsuki, Keito</creator><creator>Nersting, Jacob</creator><creator>Kihira, Kentaro</creator><creator>Hofmann, Ute</creator><creator>Komada, Yoshihiro</creator><creator>Kato, Motohiro</creator><creator>McCorkle, Robert</creator><creator>Li, Lie</creator><creator>Koh, Katsuyoshi</creator><creator>Najera, Cesar Rolando</creator><creator>Kham, Shirley Kow-Yin</creator><creator>Isobe, Tomoya</creator><creator>Chen, Zhiwei</creator><creator>Chiew, Edwynn Kean-Hui</creator><creator>Bhojwani, Deepa</creator><creator>Jeffries, Cynthia</creator><creator>Lu, Yan</creator><creator>Schwab, Matthias</creator><creator>Inaba, Hiroto</creator><creator>Pui, Ching-Hon</creator><creator>Relling, Mary V</creator><creator>Manabe, Atsushi</creator><creator>Hori, Hiroki</creator><creator>Schmiegelow, Kjeld</creator><creator>Yeoh, Allen E J</creator><creator>Evans, William E</creator><creator>Yang, Jun J</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7213-2270</orcidid><orcidid>https://orcid.org/0000-0002-0770-9659</orcidid></search><sort><creationdate>20160401</creationdate><title>NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity</title><author>Moriyama, Takaya ; Nishii, Rina ; Perez-Andreu, Virginia ; Yang, Wenjian ; Klussmann, Federico Antillon ; Zhao, Xujie ; Lin, Ting-Nien ; Hoshitsuki, Keito ; Nersting, Jacob ; Kihira, Kentaro ; Hofmann, Ute ; Komada, Yoshihiro ; Kato, Motohiro ; McCorkle, Robert ; Li, Lie ; Koh, Katsuyoshi ; Najera, Cesar Rolando ; Kham, Shirley Kow-Yin ; Isobe, Tomoya ; Chen, Zhiwei ; Chiew, Edwynn Kean-Hui ; Bhojwani, Deepa ; Jeffries, Cynthia ; Lu, Yan ; Schwab, Matthias ; Inaba, Hiroto ; Pui, Ching-Hon ; Relling, Mary V ; Manabe, Atsushi ; Hori, Hiroki ; Schmiegelow, Kjeld ; Yeoh, Allen E J ; Evans, William E ; Yang, Jun J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c664t-a623dbfc2f81287d99e42e8f9155f198eb9aa361de5fe667dd952a5157865e793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>45/23</topic><topic>631/208/205</topic><topic>692/308/575</topic><topic>82/1</topic><topic>82/29</topic><topic>82/83</topic><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Antimetabolites, Antineoplastic - adverse effects</topic><topic>Antimetabolites, Antineoplastic - therapeutic use</topic><topic>Biomedicine</topic><topic>Cancer</topic><topic>Cancer Research</topic><topic>Children & youth</topic><topic>Clinical trials</topic><topic>Consortia</topic><topic>Cytotoxicity</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Drug dosages</topic><topic>Drug metabolism</topic><topic>Gene Function</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic Association Studies</topic><topic>Genetic polymorphisms</topic><topic>Genomes</topic><topic>Haplotypes</topic><topic>Health aspects</topic><topic>Hematopoiesis - drug effects</topic><topic>Hospitals</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Leukemia</topic><topic>Lymphoma</topic><topic>Medical research</topic><topic>Mercaptopurine - adverse effects</topic><topic>Mercaptopurine - therapeutic use</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Pediatrics</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Precursor Cell Lymphoblastic Leukemia-Lymphoma - drug therapy</topic><topic>Properties</topic><topic>Proteins</topic><topic>Purines</topic><topic>Pyrophosphatases - genetics</topic><topic>Pyrophosphatases - metabolism</topic><topic>Studies</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moriyama, Takaya</creatorcontrib><creatorcontrib>Nishii, Rina</creatorcontrib><creatorcontrib>Perez-Andreu, Virginia</creatorcontrib><creatorcontrib>Yang, Wenjian</creatorcontrib><creatorcontrib>Klussmann, Federico Antillon</creatorcontrib><creatorcontrib>Zhao, Xujie</creatorcontrib><creatorcontrib>Lin, Ting-Nien</creatorcontrib><creatorcontrib>Hoshitsuki, Keito</creatorcontrib><creatorcontrib>Nersting, Jacob</creatorcontrib><creatorcontrib>Kihira, Kentaro</creatorcontrib><creatorcontrib>Hofmann, Ute</creatorcontrib><creatorcontrib>Komada, Yoshihiro</creatorcontrib><creatorcontrib>Kato, Motohiro</creatorcontrib><creatorcontrib>McCorkle, Robert</creatorcontrib><creatorcontrib>Li, Lie</creatorcontrib><creatorcontrib>Koh, Katsuyoshi</creatorcontrib><creatorcontrib>Najera, Cesar Rolando</creatorcontrib><creatorcontrib>Kham, Shirley Kow-Yin</creatorcontrib><creatorcontrib>Isobe, Tomoya</creatorcontrib><creatorcontrib>Chen, Zhiwei</creatorcontrib><creatorcontrib>Chiew, Edwynn Kean-Hui</creatorcontrib><creatorcontrib>Bhojwani, Deepa</creatorcontrib><creatorcontrib>Jeffries, Cynthia</creatorcontrib><creatorcontrib>Lu, Yan</creatorcontrib><creatorcontrib>Schwab, Matthias</creatorcontrib><creatorcontrib>Inaba, Hiroto</creatorcontrib><creatorcontrib>Pui, Ching-Hon</creatorcontrib><creatorcontrib>Relling, Mary V</creatorcontrib><creatorcontrib>Manabe, Atsushi</creatorcontrib><creatorcontrib>Hori, Hiroki</creatorcontrib><creatorcontrib>Schmiegelow, Kjeld</creatorcontrib><creatorcontrib>Yeoh, Allen E J</creatorcontrib><creatorcontrib>Evans, William E</creatorcontrib><creatorcontrib>Yang, Jun J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moriyama, Takaya</au><au>Nishii, Rina</au><au>Perez-Andreu, Virginia</au><au>Yang, Wenjian</au><au>Klussmann, Federico Antillon</au><au>Zhao, Xujie</au><au>Lin, Ting-Nien</au><au>Hoshitsuki, Keito</au><au>Nersting, Jacob</au><au>Kihira, Kentaro</au><au>Hofmann, Ute</au><au>Komada, Yoshihiro</au><au>Kato, Motohiro</au><au>McCorkle, Robert</au><au>Li, Lie</au><au>Koh, Katsuyoshi</au><au>Najera, Cesar Rolando</au><au>Kham, Shirley Kow-Yin</au><au>Isobe, Tomoya</au><au>Chen, Zhiwei</au><au>Chiew, Edwynn Kean-Hui</au><au>Bhojwani, Deepa</au><au>Jeffries, Cynthia</au><au>Lu, Yan</au><au>Schwab, Matthias</au><au>Inaba, Hiroto</au><au>Pui, Ching-Hon</au><au>Relling, Mary V</au><au>Manabe, Atsushi</au><au>Hori, Hiroki</au><au>Schmiegelow, Kjeld</au><au>Yeoh, Allen E J</au><au>Evans, William E</au><au>Yang, Jun J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>48</volume><issue>4</issue><spage>367</spage><epage>373</epage><pages>367-373</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><abstract>Jun Yang and colleagues perform targeted sequencing of
NUDT15
and identify loss-of-function variants associated with thiopurine intolerance. Functionally, they show that NUDT15 inactivates thiopurine metabolites, providing a mechanism to explain the association between
NUDT15
loss-of-function variants and thiopurine toxicity.
Widely used as anticancer and immunosuppressive agents, thiopurines have narrow therapeutic indices owing to frequent toxicities, partly explained by
TPMT
genetic polymorphisms. Recent studies identified germline
NUDT15
variation as another critical determinant of thiopurine intolerance, but the underlying molecular mechanisms and the clinical implications of this pharmacogenetic association remain unknown. In 270 children enrolled in clinical trials for acute lymphoblastic leukemia in Guatemala, Singapore and Japan, we identified four
NUDT15
coding variants (p.Arg139Cys, p.Arg139His, p.Val18Ile and p.Val18_Val19insGlyVal) that resulted in 74.4–100% loss of nucleotide diphosphatase activity. Loss-of-function
NUDT15
diplotypes were consistently associated with thiopurine intolerance across the three cohorts (
P
= 0.021, 2.1 × 10
−5
and 0.0054, respectively; meta-analysis
P
= 4.45 × 10
−8
, allelic effect size = −11.5). Mechanistically, NUDT15 inactivated thiopurine metabolites and decreased thiopurine cytotoxicity
in vitro
, and patients with defective
NUDT15
alleles showed excessive levels of thiopurine active metabolites and toxicity. Taken together, these results indicate that a comprehensive pharmacogenetic model integrating
NUDT15
variants may inform personalized thiopurine therapy.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>26878724</pmid><doi>10.1038/ng.3508</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7213-2270</orcidid><orcidid>https://orcid.org/0000-0002-0770-9659</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-4036 |
ispartof | Nature genetics, 2016-04, Vol.48 (4), p.367-373 |
issn | 1061-4036 1546-1718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5029084 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 45/23 631/208/205 692/308/575 82/1 82/29 82/83 Agriculture Animal Genetics and Genomics Antimetabolites, Antineoplastic - adverse effects Antimetabolites, Antineoplastic - therapeutic use Biomedicine Cancer Cancer Research Children & youth Clinical trials Consortia Cytotoxicity Deoxyribonucleic acid DNA Drug dosages Drug metabolism Gene Function Genes Genetic aspects Genetic Association Studies Genetic polymorphisms Genomes Haplotypes Health aspects Hematopoiesis - drug effects Hospitals Human Genetics Humans Leukemia Lymphoma Medical research Mercaptopurine - adverse effects Mercaptopurine - therapeutic use Metabolism Metabolites Pediatrics Polymorphism, Single Nucleotide Precursor Cell Lymphoblastic Leukemia-Lymphoma - drug therapy Properties Proteins Purines Pyrophosphatases - genetics Pyrophosphatases - metabolism Studies Toxicity |
title | NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A38%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NUDT15%20polymorphisms%20alter%20thiopurine%20metabolism%20and%20hematopoietic%20toxicity&rft.jtitle=Nature%20genetics&rft.au=Moriyama,%20Takaya&rft.date=2016-04-01&rft.volume=48&rft.issue=4&rft.spage=367&rft.epage=373&rft.pages=367-373&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/ng.3508&rft_dat=%3Cgale_pubme%3EA450362591%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1780481593&rft_id=info:pmid/26878724&rft_galeid=A450362591&rfr_iscdi=true |