Localized Irradiation of Cell Membrane by Auger Electrons Is Cytotoxic Through Oxidative Stress-Mediated Nontargeted Effects

We investigated whether radiation-induced nontargeted effects are involved in the cytotoxic effects of anticell surface monoclonal antibodies labeled with Auger electron emitters, such as iodine 125 (monoclonal antibodies labeled with (125)I [(125)I-mAbs]). We showed that the cytotoxicity of (125)I-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antioxidants & redox signaling 2016-09, Vol.25 (8), p.467-484
Hauptverfasser: Paillas, Salomé, Ladjohounlou, Riad, Lozza, Catherine, Pichard, Alexandre, Boudousq, Vincent, Jarlier, Marta, Sevestre, Samuel, Le Blay, Marion, Deshayes, Emmanuel, Sosabowski, Jane, Chardès, Thierry, Navarro-Teulon, Isabelle, Mairs, Robert J, Pouget, Jean-Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 484
container_issue 8
container_start_page 467
container_title Antioxidants & redox signaling
container_volume 25
creator Paillas, Salomé
Ladjohounlou, Riad
Lozza, Catherine
Pichard, Alexandre
Boudousq, Vincent
Jarlier, Marta
Sevestre, Samuel
Le Blay, Marion
Deshayes, Emmanuel
Sosabowski, Jane
Chardès, Thierry
Navarro-Teulon, Isabelle
Mairs, Robert J
Pouget, Jean-Pierre
description We investigated whether radiation-induced nontargeted effects are involved in the cytotoxic effects of anticell surface monoclonal antibodies labeled with Auger electron emitters, such as iodine 125 (monoclonal antibodies labeled with (125)I [(125)I-mAbs]). We showed that the cytotoxicity of (125)I-mAbs targeting the cell membrane of p53(+/+) HCT116 colon cancer cells is mainly due to nontargeted effects. Targeted and nontargeted cytotoxicities were inhibited in vitro following lipid raft disruption with Methyl-β-cyclodextrin (MBCD) or filipin or use of radical oxygen species scavengers. (125)I-mAb efficacy was associated with acid sphingomyelinase activation and modulated through activation of the AKT, extracellular signal-related kinase ½ (ERK1/2), p38 kinase, c-Jun N-terminal kinase (JNK) signaling pathways, and also of phospholipase C-γ (PLC-γ), proline-rich tyrosine kinase 2 (PYK-2), and paxillin, involved in Ca(2+) fluxes. Moreover, the nontargeted response induced by directing 5-[(125)I]iodo-2'-deoxyuridine to the nucleus was comparable to that of (125)I-mAb against cell surface receptors. In vivo, we found that the statistical significance of tumor growth delay induced by (125)I-mAb was removed after MBCD treatment and observed oxidative DNA damage beyond the expected Auger electron range. These results suggest the involvement of nontargeted effects in vivo also. Low-energy Auger electrons, such as those emitted by (125)I, have a short tissue range and are usually targeted to the nucleus to maximize their cytotoxicity. In this study, we show that targeting the cancer cell surface with (125)I-mAbs produces a lipid raft-mediated nontargeted response that compensates for the inferior efficacy of non-nuclear targeting. Our findings describe the mechanisms involved in the efficacy of (125)I-mAbs targeting the cancer cell surface. Antioxid. Redox Signal. 25, 467-484.
doi_str_mv 10.1089/ars.2015.6309
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5028911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2133442353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-160b85388301dad42029eb35d2f4a98021caa39012404f0d1611d60b7688aa703</originalsourceid><addsrcrecordid>eNqNks1v1DAQxSMEoh9w5IoscSmHLDN27NgXpNVqoStt6YFytpzE2U2VjYvtrLqIP76OtlTQEyeP7De_8Ty9LHuHMEOQ6pPxYUYB-UwwUC-yU-S8zMsSxcuppiwHKYqT7CyEWwCgiPA6O6ElpQVwdZr9Xrva9N0v25CV96bpTOzcQFxLFrbvyZXdVd4MllQHMh831pNlb-vo3RDIKpDFIbro7rua3Gy9Gzdbcn3fNQmxt-R79DaE_MpOzIT_5oZo_MZO9bJtEyW8yV61pg_27eN5nv34srxZXObr66-rxXyd17yQMUcBleRMSgbYmKagQJWtGG9oWxgl01K1MUwBpp2KFhoUiE3qKYWUxpTAzrPPR-7dWO1sU9shetPrO9_tjD9oZzr978vQbfXG7TUHKhViAnw8ArbP2i7naz3dASrglLL9pL14HObdz9GGqHddqJOZyUY3Bo2SllIJrth_SFEIhmUpkvTDM-mtG_2QXNMUGSsKyvgEzI-q2rsQvG2fPougp7joFBc9xUVPcUn6938b86T-kw_2AEE3umY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2133442353</pqid></control><display><type>article</type><title>Localized Irradiation of Cell Membrane by Auger Electrons Is Cytotoxic Through Oxidative Stress-Mediated Nontargeted Effects</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Paillas, Salomé ; Ladjohounlou, Riad ; Lozza, Catherine ; Pichard, Alexandre ; Boudousq, Vincent ; Jarlier, Marta ; Sevestre, Samuel ; Le Blay, Marion ; Deshayes, Emmanuel ; Sosabowski, Jane ; Chardès, Thierry ; Navarro-Teulon, Isabelle ; Mairs, Robert J ; Pouget, Jean-Pierre</creator><creatorcontrib>Paillas, Salomé ; Ladjohounlou, Riad ; Lozza, Catherine ; Pichard, Alexandre ; Boudousq, Vincent ; Jarlier, Marta ; Sevestre, Samuel ; Le Blay, Marion ; Deshayes, Emmanuel ; Sosabowski, Jane ; Chardès, Thierry ; Navarro-Teulon, Isabelle ; Mairs, Robert J ; Pouget, Jean-Pierre</creatorcontrib><description>We investigated whether radiation-induced nontargeted effects are involved in the cytotoxic effects of anticell surface monoclonal antibodies labeled with Auger electron emitters, such as iodine 125 (monoclonal antibodies labeled with (125)I [(125)I-mAbs]). We showed that the cytotoxicity of (125)I-mAbs targeting the cell membrane of p53(+/+) HCT116 colon cancer cells is mainly due to nontargeted effects. Targeted and nontargeted cytotoxicities were inhibited in vitro following lipid raft disruption with Methyl-β-cyclodextrin (MBCD) or filipin or use of radical oxygen species scavengers. (125)I-mAb efficacy was associated with acid sphingomyelinase activation and modulated through activation of the AKT, extracellular signal-related kinase ½ (ERK1/2), p38 kinase, c-Jun N-terminal kinase (JNK) signaling pathways, and also of phospholipase C-γ (PLC-γ), proline-rich tyrosine kinase 2 (PYK-2), and paxillin, involved in Ca(2+) fluxes. Moreover, the nontargeted response induced by directing 5-[(125)I]iodo-2'-deoxyuridine to the nucleus was comparable to that of (125)I-mAb against cell surface receptors. In vivo, we found that the statistical significance of tumor growth delay induced by (125)I-mAb was removed after MBCD treatment and observed oxidative DNA damage beyond the expected Auger electron range. These results suggest the involvement of nontargeted effects in vivo also. Low-energy Auger electrons, such as those emitted by (125)I, have a short tissue range and are usually targeted to the nucleus to maximize their cytotoxicity. In this study, we show that targeting the cancer cell surface with (125)I-mAbs produces a lipid raft-mediated nontargeted response that compensates for the inferior efficacy of non-nuclear targeting. Our findings describe the mechanisms involved in the efficacy of (125)I-mAbs targeting the cancer cell surface. Antioxid. Redox Signal. 25, 467-484.</description><identifier>ISSN: 1523-0864</identifier><identifier>EISSN: 1557-7716</identifier><identifier>DOI: 10.1089/ars.2015.6309</identifier><identifier>PMID: 27224059</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Activation ; AKT protein ; Augers ; Biochemistry ; Biochemistry, Molecular Biology ; Biocompatibility ; c-Jun protein ; Calcium ; Calcium ions ; Cancer ; Cell Line, Tumor ; Cell Membrane - metabolism ; Cell Membrane - radiation effects ; Cell membranes ; Cell surface ; Cell Survival - drug effects ; Cell Survival - genetics ; Cell Survival - radiation effects ; Colon ; Colon cancer ; Cyclodextrins ; Cytotoxicity ; Deoxyribonucleic acid ; DNA ; DNA damage ; DNA Damage - drug effects ; DNA Damage - radiation effects ; Effectiveness ; Electrons ; Emitters (electron) ; Endocrinology and metabolism ; Extracellular signal-regulated kinase ; Fluxes ; Gene Knockout Techniques ; Genes, p53 ; HCT116 Cells ; Human health and pathology ; Humans ; Immunoconjugates - pharmacology ; Innovations ; Iodine ; Iodine 125 ; Iodine isotopes ; Iodine radioisotopes ; Iodine Radioisotopes - adverse effects ; Irradiation ; JNK protein ; Kinases ; Life Sciences ; Lipids ; MAP Kinase Signaling System ; Membrane Microdomains - drug effects ; Membrane Microdomains - metabolism ; Membrane Microdomains - radiation effects ; Methyl-β-Cyclodextrin ; Models, Biological ; Molecular biology ; Monoclonal antibodies ; Nuclei (cytology) ; Nuclei (nuclear physics) ; Original Research Communications ; Oxidative stress ; Oxidative Stress - radiation effects ; p53 Protein ; Paxillin ; Phospholipase ; Phospholipase C ; Phosphoproteins - metabolism ; Proline ; Proline-rich tyrosine kinase 2 ; Protein-tyrosine kinase ; Radiation ; Radiation effects ; Reactive Oxygen Species - metabolism ; Sphingomyelin phosphodiesterase ; Toxicity ; Transcription factors ; Tyrosine</subject><ispartof>Antioxidants &amp; redox signaling, 2016-09, Vol.25 (8), p.467-484</ispartof><rights>Copyright Mary Ann Liebert, Inc. Sep 10, 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Salomé Paillas, ., 2016; Published by Mary Ann Liebert, Inc. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c548t-160b85388301dad42029eb35d2f4a98021caa39012404f0d1611d60b7688aa703</citedby><cites>FETCH-LOGICAL-c548t-160b85388301dad42029eb35d2f4a98021caa39012404f0d1611d60b7688aa703</cites><orcidid>0000-0002-5156-7395 ; 0000-0001-8551-2029 ; 0000-0002-1836-7439 ; 0000-0002-6751-7042</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27224059$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01905223$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Paillas, Salomé</creatorcontrib><creatorcontrib>Ladjohounlou, Riad</creatorcontrib><creatorcontrib>Lozza, Catherine</creatorcontrib><creatorcontrib>Pichard, Alexandre</creatorcontrib><creatorcontrib>Boudousq, Vincent</creatorcontrib><creatorcontrib>Jarlier, Marta</creatorcontrib><creatorcontrib>Sevestre, Samuel</creatorcontrib><creatorcontrib>Le Blay, Marion</creatorcontrib><creatorcontrib>Deshayes, Emmanuel</creatorcontrib><creatorcontrib>Sosabowski, Jane</creatorcontrib><creatorcontrib>Chardès, Thierry</creatorcontrib><creatorcontrib>Navarro-Teulon, Isabelle</creatorcontrib><creatorcontrib>Mairs, Robert J</creatorcontrib><creatorcontrib>Pouget, Jean-Pierre</creatorcontrib><title>Localized Irradiation of Cell Membrane by Auger Electrons Is Cytotoxic Through Oxidative Stress-Mediated Nontargeted Effects</title><title>Antioxidants &amp; redox signaling</title><addtitle>Antioxid Redox Signal</addtitle><description>We investigated whether radiation-induced nontargeted effects are involved in the cytotoxic effects of anticell surface monoclonal antibodies labeled with Auger electron emitters, such as iodine 125 (monoclonal antibodies labeled with (125)I [(125)I-mAbs]). We showed that the cytotoxicity of (125)I-mAbs targeting the cell membrane of p53(+/+) HCT116 colon cancer cells is mainly due to nontargeted effects. Targeted and nontargeted cytotoxicities were inhibited in vitro following lipid raft disruption with Methyl-β-cyclodextrin (MBCD) or filipin or use of radical oxygen species scavengers. (125)I-mAb efficacy was associated with acid sphingomyelinase activation and modulated through activation of the AKT, extracellular signal-related kinase ½ (ERK1/2), p38 kinase, c-Jun N-terminal kinase (JNK) signaling pathways, and also of phospholipase C-γ (PLC-γ), proline-rich tyrosine kinase 2 (PYK-2), and paxillin, involved in Ca(2+) fluxes. Moreover, the nontargeted response induced by directing 5-[(125)I]iodo-2'-deoxyuridine to the nucleus was comparable to that of (125)I-mAb against cell surface receptors. In vivo, we found that the statistical significance of tumor growth delay induced by (125)I-mAb was removed after MBCD treatment and observed oxidative DNA damage beyond the expected Auger electron range. These results suggest the involvement of nontargeted effects in vivo also. Low-energy Auger electrons, such as those emitted by (125)I, have a short tissue range and are usually targeted to the nucleus to maximize their cytotoxicity. In this study, we show that targeting the cancer cell surface with (125)I-mAbs produces a lipid raft-mediated nontargeted response that compensates for the inferior efficacy of non-nuclear targeting. Our findings describe the mechanisms involved in the efficacy of (125)I-mAbs targeting the cancer cell surface. Antioxid. Redox Signal. 25, 467-484.</description><subject>Activation</subject><subject>AKT protein</subject><subject>Augers</subject><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biocompatibility</subject><subject>c-Jun protein</subject><subject>Calcium</subject><subject>Calcium ions</subject><subject>Cancer</subject><subject>Cell Line, Tumor</subject><subject>Cell Membrane - metabolism</subject><subject>Cell Membrane - radiation effects</subject><subject>Cell membranes</subject><subject>Cell surface</subject><subject>Cell Survival - drug effects</subject><subject>Cell Survival - genetics</subject><subject>Cell Survival - radiation effects</subject><subject>Colon</subject><subject>Colon cancer</subject><subject>Cyclodextrins</subject><subject>Cytotoxicity</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA Damage - drug effects</subject><subject>DNA Damage - radiation effects</subject><subject>Effectiveness</subject><subject>Electrons</subject><subject>Emitters (electron)</subject><subject>Endocrinology and metabolism</subject><subject>Extracellular signal-regulated kinase</subject><subject>Fluxes</subject><subject>Gene Knockout Techniques</subject><subject>Genes, p53</subject><subject>HCT116 Cells</subject><subject>Human health and pathology</subject><subject>Humans</subject><subject>Immunoconjugates - pharmacology</subject><subject>Innovations</subject><subject>Iodine</subject><subject>Iodine 125</subject><subject>Iodine isotopes</subject><subject>Iodine radioisotopes</subject><subject>Iodine Radioisotopes - adverse effects</subject><subject>Irradiation</subject><subject>JNK protein</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>MAP Kinase Signaling System</subject><subject>Membrane Microdomains - drug effects</subject><subject>Membrane Microdomains - metabolism</subject><subject>Membrane Microdomains - radiation effects</subject><subject>Methyl-β-Cyclodextrin</subject><subject>Models, Biological</subject><subject>Molecular biology</subject><subject>Monoclonal antibodies</subject><subject>Nuclei (cytology)</subject><subject>Nuclei (nuclear physics)</subject><subject>Original Research Communications</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - radiation effects</subject><subject>p53 Protein</subject><subject>Paxillin</subject><subject>Phospholipase</subject><subject>Phospholipase C</subject><subject>Phosphoproteins - metabolism</subject><subject>Proline</subject><subject>Proline-rich tyrosine kinase 2</subject><subject>Protein-tyrosine kinase</subject><subject>Radiation</subject><subject>Radiation effects</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Sphingomyelin phosphodiesterase</subject><subject>Toxicity</subject><subject>Transcription factors</subject><subject>Tyrosine</subject><issn>1523-0864</issn><issn>1557-7716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks1v1DAQxSMEoh9w5IoscSmHLDN27NgXpNVqoStt6YFytpzE2U2VjYvtrLqIP76OtlTQEyeP7De_8Ty9LHuHMEOQ6pPxYUYB-UwwUC-yU-S8zMsSxcuppiwHKYqT7CyEWwCgiPA6O6ElpQVwdZr9Xrva9N0v25CV96bpTOzcQFxLFrbvyZXdVd4MllQHMh831pNlb-vo3RDIKpDFIbro7rua3Gy9Gzdbcn3fNQmxt-R79DaE_MpOzIT_5oZo_MZO9bJtEyW8yV61pg_27eN5nv34srxZXObr66-rxXyd17yQMUcBleRMSgbYmKagQJWtGG9oWxgl01K1MUwBpp2KFhoUiE3qKYWUxpTAzrPPR-7dWO1sU9shetPrO9_tjD9oZzr978vQbfXG7TUHKhViAnw8ArbP2i7naz3dASrglLL9pL14HObdz9GGqHddqJOZyUY3Bo2SllIJrth_SFEIhmUpkvTDM-mtG_2QXNMUGSsKyvgEzI-q2rsQvG2fPougp7joFBc9xUVPcUn6938b86T-kw_2AEE3umY</recordid><startdate>20160910</startdate><enddate>20160910</enddate><creator>Paillas, Salomé</creator><creator>Ladjohounlou, Riad</creator><creator>Lozza, Catherine</creator><creator>Pichard, Alexandre</creator><creator>Boudousq, Vincent</creator><creator>Jarlier, Marta</creator><creator>Sevestre, Samuel</creator><creator>Le Blay, Marion</creator><creator>Deshayes, Emmanuel</creator><creator>Sosabowski, Jane</creator><creator>Chardès, Thierry</creator><creator>Navarro-Teulon, Isabelle</creator><creator>Mairs, Robert J</creator><creator>Pouget, Jean-Pierre</creator><general>Mary Ann Liebert, Inc</general><general>Mary Ann Liebert</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5156-7395</orcidid><orcidid>https://orcid.org/0000-0001-8551-2029</orcidid><orcidid>https://orcid.org/0000-0002-1836-7439</orcidid><orcidid>https://orcid.org/0000-0002-6751-7042</orcidid></search><sort><creationdate>20160910</creationdate><title>Localized Irradiation of Cell Membrane by Auger Electrons Is Cytotoxic Through Oxidative Stress-Mediated Nontargeted Effects</title><author>Paillas, Salomé ; Ladjohounlou, Riad ; Lozza, Catherine ; Pichard, Alexandre ; Boudousq, Vincent ; Jarlier, Marta ; Sevestre, Samuel ; Le Blay, Marion ; Deshayes, Emmanuel ; Sosabowski, Jane ; Chardès, Thierry ; Navarro-Teulon, Isabelle ; Mairs, Robert J ; Pouget, Jean-Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-160b85388301dad42029eb35d2f4a98021caa39012404f0d1611d60b7688aa703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Activation</topic><topic>AKT protein</topic><topic>Augers</topic><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biocompatibility</topic><topic>c-Jun protein</topic><topic>Calcium</topic><topic>Calcium ions</topic><topic>Cancer</topic><topic>Cell Line, Tumor</topic><topic>Cell Membrane - metabolism</topic><topic>Cell Membrane - radiation effects</topic><topic>Cell membranes</topic><topic>Cell surface</topic><topic>Cell Survival - drug effects</topic><topic>Cell Survival - genetics</topic><topic>Cell Survival - radiation effects</topic><topic>Colon</topic><topic>Colon cancer</topic><topic>Cyclodextrins</topic><topic>Cytotoxicity</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA Damage - drug effects</topic><topic>DNA Damage - radiation effects</topic><topic>Effectiveness</topic><topic>Electrons</topic><topic>Emitters (electron)</topic><topic>Endocrinology and metabolism</topic><topic>Extracellular signal-regulated kinase</topic><topic>Fluxes</topic><topic>Gene Knockout Techniques</topic><topic>Genes, p53</topic><topic>HCT116 Cells</topic><topic>Human health and pathology</topic><topic>Humans</topic><topic>Immunoconjugates - pharmacology</topic><topic>Innovations</topic><topic>Iodine</topic><topic>Iodine 125</topic><topic>Iodine isotopes</topic><topic>Iodine radioisotopes</topic><topic>Iodine Radioisotopes - adverse effects</topic><topic>Irradiation</topic><topic>JNK protein</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>MAP Kinase Signaling System</topic><topic>Membrane Microdomains - drug effects</topic><topic>Membrane Microdomains - metabolism</topic><topic>Membrane Microdomains - radiation effects</topic><topic>Methyl-β-Cyclodextrin</topic><topic>Models, Biological</topic><topic>Molecular biology</topic><topic>Monoclonal antibodies</topic><topic>Nuclei (cytology)</topic><topic>Nuclei (nuclear physics)</topic><topic>Original Research Communications</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - radiation effects</topic><topic>p53 Protein</topic><topic>Paxillin</topic><topic>Phospholipase</topic><topic>Phospholipase C</topic><topic>Phosphoproteins - metabolism</topic><topic>Proline</topic><topic>Proline-rich tyrosine kinase 2</topic><topic>Protein-tyrosine kinase</topic><topic>Radiation</topic><topic>Radiation effects</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Sphingomyelin phosphodiesterase</topic><topic>Toxicity</topic><topic>Transcription factors</topic><topic>Tyrosine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paillas, Salomé</creatorcontrib><creatorcontrib>Ladjohounlou, Riad</creatorcontrib><creatorcontrib>Lozza, Catherine</creatorcontrib><creatorcontrib>Pichard, Alexandre</creatorcontrib><creatorcontrib>Boudousq, Vincent</creatorcontrib><creatorcontrib>Jarlier, Marta</creatorcontrib><creatorcontrib>Sevestre, Samuel</creatorcontrib><creatorcontrib>Le Blay, Marion</creatorcontrib><creatorcontrib>Deshayes, Emmanuel</creatorcontrib><creatorcontrib>Sosabowski, Jane</creatorcontrib><creatorcontrib>Chardès, Thierry</creatorcontrib><creatorcontrib>Navarro-Teulon, Isabelle</creatorcontrib><creatorcontrib>Mairs, Robert J</creatorcontrib><creatorcontrib>Pouget, Jean-Pierre</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Antioxidants &amp; redox signaling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paillas, Salomé</au><au>Ladjohounlou, Riad</au><au>Lozza, Catherine</au><au>Pichard, Alexandre</au><au>Boudousq, Vincent</au><au>Jarlier, Marta</au><au>Sevestre, Samuel</au><au>Le Blay, Marion</au><au>Deshayes, Emmanuel</au><au>Sosabowski, Jane</au><au>Chardès, Thierry</au><au>Navarro-Teulon, Isabelle</au><au>Mairs, Robert J</au><au>Pouget, Jean-Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Localized Irradiation of Cell Membrane by Auger Electrons Is Cytotoxic Through Oxidative Stress-Mediated Nontargeted Effects</atitle><jtitle>Antioxidants &amp; redox signaling</jtitle><addtitle>Antioxid Redox Signal</addtitle><date>2016-09-10</date><risdate>2016</risdate><volume>25</volume><issue>8</issue><spage>467</spage><epage>484</epage><pages>467-484</pages><issn>1523-0864</issn><eissn>1557-7716</eissn><abstract>We investigated whether radiation-induced nontargeted effects are involved in the cytotoxic effects of anticell surface monoclonal antibodies labeled with Auger electron emitters, such as iodine 125 (monoclonal antibodies labeled with (125)I [(125)I-mAbs]). We showed that the cytotoxicity of (125)I-mAbs targeting the cell membrane of p53(+/+) HCT116 colon cancer cells is mainly due to nontargeted effects. Targeted and nontargeted cytotoxicities were inhibited in vitro following lipid raft disruption with Methyl-β-cyclodextrin (MBCD) or filipin or use of radical oxygen species scavengers. (125)I-mAb efficacy was associated with acid sphingomyelinase activation and modulated through activation of the AKT, extracellular signal-related kinase ½ (ERK1/2), p38 kinase, c-Jun N-terminal kinase (JNK) signaling pathways, and also of phospholipase C-γ (PLC-γ), proline-rich tyrosine kinase 2 (PYK-2), and paxillin, involved in Ca(2+) fluxes. Moreover, the nontargeted response induced by directing 5-[(125)I]iodo-2'-deoxyuridine to the nucleus was comparable to that of (125)I-mAb against cell surface receptors. In vivo, we found that the statistical significance of tumor growth delay induced by (125)I-mAb was removed after MBCD treatment and observed oxidative DNA damage beyond the expected Auger electron range. These results suggest the involvement of nontargeted effects in vivo also. Low-energy Auger electrons, such as those emitted by (125)I, have a short tissue range and are usually targeted to the nucleus to maximize their cytotoxicity. In this study, we show that targeting the cancer cell surface with (125)I-mAbs produces a lipid raft-mediated nontargeted response that compensates for the inferior efficacy of non-nuclear targeting. Our findings describe the mechanisms involved in the efficacy of (125)I-mAbs targeting the cancer cell surface. Antioxid. Redox Signal. 25, 467-484.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>27224059</pmid><doi>10.1089/ars.2015.6309</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-5156-7395</orcidid><orcidid>https://orcid.org/0000-0001-8551-2029</orcidid><orcidid>https://orcid.org/0000-0002-1836-7439</orcidid><orcidid>https://orcid.org/0000-0002-6751-7042</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1523-0864
ispartof Antioxidants & redox signaling, 2016-09, Vol.25 (8), p.467-484
issn 1523-0864
1557-7716
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5028911
source MEDLINE; Alma/SFX Local Collection
subjects Activation
AKT protein
Augers
Biochemistry
Biochemistry, Molecular Biology
Biocompatibility
c-Jun protein
Calcium
Calcium ions
Cancer
Cell Line, Tumor
Cell Membrane - metabolism
Cell Membrane - radiation effects
Cell membranes
Cell surface
Cell Survival - drug effects
Cell Survival - genetics
Cell Survival - radiation effects
Colon
Colon cancer
Cyclodextrins
Cytotoxicity
Deoxyribonucleic acid
DNA
DNA damage
DNA Damage - drug effects
DNA Damage - radiation effects
Effectiveness
Electrons
Emitters (electron)
Endocrinology and metabolism
Extracellular signal-regulated kinase
Fluxes
Gene Knockout Techniques
Genes, p53
HCT116 Cells
Human health and pathology
Humans
Immunoconjugates - pharmacology
Innovations
Iodine
Iodine 125
Iodine isotopes
Iodine radioisotopes
Iodine Radioisotopes - adverse effects
Irradiation
JNK protein
Kinases
Life Sciences
Lipids
MAP Kinase Signaling System
Membrane Microdomains - drug effects
Membrane Microdomains - metabolism
Membrane Microdomains - radiation effects
Methyl-β-Cyclodextrin
Models, Biological
Molecular biology
Monoclonal antibodies
Nuclei (cytology)
Nuclei (nuclear physics)
Original Research Communications
Oxidative stress
Oxidative Stress - radiation effects
p53 Protein
Paxillin
Phospholipase
Phospholipase C
Phosphoproteins - metabolism
Proline
Proline-rich tyrosine kinase 2
Protein-tyrosine kinase
Radiation
Radiation effects
Reactive Oxygen Species - metabolism
Sphingomyelin phosphodiesterase
Toxicity
Transcription factors
Tyrosine
title Localized Irradiation of Cell Membrane by Auger Electrons Is Cytotoxic Through Oxidative Stress-Mediated Nontargeted Effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A02%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Localized%20Irradiation%20of%20Cell%20Membrane%20by%20Auger%20Electrons%20Is%20Cytotoxic%20Through%20Oxidative%20Stress-Mediated%20Nontargeted%20Effects&rft.jtitle=Antioxidants%20&%20redox%20signaling&rft.au=Paillas,%20Salom%C3%A9&rft.date=2016-09-10&rft.volume=25&rft.issue=8&rft.spage=467&rft.epage=484&rft.pages=467-484&rft.issn=1523-0864&rft.eissn=1557-7716&rft_id=info:doi/10.1089/ars.2015.6309&rft_dat=%3Cproquest_pubme%3E2133442353%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2133442353&rft_id=info:pmid/27224059&rfr_iscdi=true