Characterization and classification of adherent cells in monolayer culture using automated tracking and evolutionary algorithms
This paper presents a novel method for tracking and characterizing adherent cells in monolayer culture. A system of cell tracking employing computer vision techniques was applied to time-lapse videos of replicate normal human uro-epithelial cell cultures exposed to different concentrations of adenos...
Gespeichert in:
Veröffentlicht in: | BioSystems 2016-08, Vol.146, p.110-121 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 121 |
---|---|
container_issue | |
container_start_page | 110 |
container_title | BioSystems |
container_volume | 146 |
creator | Zhang, Zhen Bedder, Matthew Smith, Stephen L. Walker, Dawn Shabir, Saqib Southgate, Jennifer |
description | This paper presents a novel method for tracking and characterizing adherent cells in monolayer culture. A system of cell tracking employing computer vision techniques was applied to time-lapse videos of replicate normal human uro-epithelial cell cultures exposed to different concentrations of adenosine triphosphate (ATP) and a selective purinergic P2X antagonist (PPADS), acquired over a 24h period. Subsequent analysis following feature extraction demonstrated the ability of the technique to successfully separate the modulated classes of cell using evolutionary algorithms. Specifically, a Cartesian Genetic Program (CGP) network was evolved that identified average migration speed, in-contact angular velocity, cohesivity and average cell clump size as the principal features contributing to the separation. Our approach not only provides non-biased and parsimonious insight into modulated class behaviours, but can be extracted as mathematical formulae for the parameterization of computational models. |
doi_str_mv | 10.1016/j.biosystems.2016.05.009 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5028014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0303264716300727</els_id><sourcerecordid>27267455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-48588e26129dd46fadfa2bf76d947f6a225a652502d8e17b7f2846a33f412be93</originalsourceid><addsrcrecordid>eNqFkcGO0zAQhi0EYsvCKyC_QILtOIlzQYKKhZVW4gJna2KPW5ckXtlOpXLZV8elsMAJXyz9nv8bz_yEUM5qznj35lCPPqRTyjinWhSlZm3N2PCEbLjqRaUaIZ-SDWtYU4lO9lfkRUoHVk6r-HNyJXrR9bJtN-Rhu4cIJmP03yH7sFBYLDUTpOSdNxcpOAp2jxGXTA1OU6J-oXNYwgQnjNSsU14j0jX5ZUdhzWGGjJbmAv72UypIPIZpPdMgnihMuxB93s_pJXnmYEr46td9Tb7efPiy_VTdff54u313VxnZD7mSqlUKRcfFYK3sHFgHYnR9ZwfZuw6EaKFrRcuEVcj7sXdCyQ6axkkuRhyaa_L2wr1fxxmtKaNEmPR99HP5kA7g9b8vi9_rXTjqglSMywJQF4CJIaWI7tHLmT6Hog_6Tyj6HIpmrS6hFOvrv3s_Gn-nUAreXwqwbODoMepkPC4GrY9osrbB_7_LD68wqUQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Characterization and classification of adherent cells in monolayer culture using automated tracking and evolutionary algorithms</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Zhang, Zhen ; Bedder, Matthew ; Smith, Stephen L. ; Walker, Dawn ; Shabir, Saqib ; Southgate, Jennifer</creator><creatorcontrib>Zhang, Zhen ; Bedder, Matthew ; Smith, Stephen L. ; Walker, Dawn ; Shabir, Saqib ; Southgate, Jennifer</creatorcontrib><description>This paper presents a novel method for tracking and characterizing adherent cells in monolayer culture. A system of cell tracking employing computer vision techniques was applied to time-lapse videos of replicate normal human uro-epithelial cell cultures exposed to different concentrations of adenosine triphosphate (ATP) and a selective purinergic P2X antagonist (PPADS), acquired over a 24h period. Subsequent analysis following feature extraction demonstrated the ability of the technique to successfully separate the modulated classes of cell using evolutionary algorithms. Specifically, a Cartesian Genetic Program (CGP) network was evolved that identified average migration speed, in-contact angular velocity, cohesivity and average cell clump size as the principal features contributing to the separation. Our approach not only provides non-biased and parsimonious insight into modulated class behaviours, but can be extracted as mathematical formulae for the parameterization of computational models.</description><identifier>ISSN: 0303-2647</identifier><identifier>EISSN: 1872-8324</identifier><identifier>DOI: 10.1016/j.biosystems.2016.05.009</identifier><identifier>PMID: 27267455</identifier><language>eng</language><publisher>Ireland: Elsevier Ireland Ltd</publisher><subject>Adenosine Triphosphate - pharmacology ; Algorithms ; Cell Adhesion ; Cell Count ; Cell Culture Techniques ; Cell Line ; Cell Movement - drug effects ; Cell Tracking - methods ; Epithelial Cells - classification ; Epithelial Cells - drug effects ; Epithelial Cells - metabolism ; Gene Regulatory Networks - drug effects ; Humans ; Microscopy, Video - methods ; Pattern Recognition, Automated - methods ; Pyridoxal Phosphate - analogs & derivatives ; Pyridoxal Phosphate - pharmacology ; Signal Transduction - drug effects ; Signal Transduction - genetics ; Time-Lapse Imaging - methods ; Urothelium - cytology</subject><ispartof>BioSystems, 2016-08, Vol.146, p.110-121</ispartof><rights>2016 The Authors</rights><rights>Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.</rights><rights>2016 The Authors 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-48588e26129dd46fadfa2bf76d947f6a225a652502d8e17b7f2846a33f412be93</citedby><cites>FETCH-LOGICAL-c479t-48588e26129dd46fadfa2bf76d947f6a225a652502d8e17b7f2846a33f412be93</cites><orcidid>0000-0003-1361-408X ; 0000-0003-0062-6399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biosystems.2016.05.009$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3541,27915,27916,45986</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27267455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Bedder, Matthew</creatorcontrib><creatorcontrib>Smith, Stephen L.</creatorcontrib><creatorcontrib>Walker, Dawn</creatorcontrib><creatorcontrib>Shabir, Saqib</creatorcontrib><creatorcontrib>Southgate, Jennifer</creatorcontrib><title>Characterization and classification of adherent cells in monolayer culture using automated tracking and evolutionary algorithms</title><title>BioSystems</title><addtitle>Biosystems</addtitle><description>This paper presents a novel method for tracking and characterizing adherent cells in monolayer culture. A system of cell tracking employing computer vision techniques was applied to time-lapse videos of replicate normal human uro-epithelial cell cultures exposed to different concentrations of adenosine triphosphate (ATP) and a selective purinergic P2X antagonist (PPADS), acquired over a 24h period. Subsequent analysis following feature extraction demonstrated the ability of the technique to successfully separate the modulated classes of cell using evolutionary algorithms. Specifically, a Cartesian Genetic Program (CGP) network was evolved that identified average migration speed, in-contact angular velocity, cohesivity and average cell clump size as the principal features contributing to the separation. Our approach not only provides non-biased and parsimonious insight into modulated class behaviours, but can be extracted as mathematical formulae for the parameterization of computational models.</description><subject>Adenosine Triphosphate - pharmacology</subject><subject>Algorithms</subject><subject>Cell Adhesion</subject><subject>Cell Count</subject><subject>Cell Culture Techniques</subject><subject>Cell Line</subject><subject>Cell Movement - drug effects</subject><subject>Cell Tracking - methods</subject><subject>Epithelial Cells - classification</subject><subject>Epithelial Cells - drug effects</subject><subject>Epithelial Cells - metabolism</subject><subject>Gene Regulatory Networks - drug effects</subject><subject>Humans</subject><subject>Microscopy, Video - methods</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pyridoxal Phosphate - analogs & derivatives</subject><subject>Pyridoxal Phosphate - pharmacology</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - genetics</subject><subject>Time-Lapse Imaging - methods</subject><subject>Urothelium - cytology</subject><issn>0303-2647</issn><issn>1872-8324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcGO0zAQhi0EYsvCKyC_QILtOIlzQYKKhZVW4gJna2KPW5ckXtlOpXLZV8elsMAJXyz9nv8bz_yEUM5qznj35lCPPqRTyjinWhSlZm3N2PCEbLjqRaUaIZ-SDWtYU4lO9lfkRUoHVk6r-HNyJXrR9bJtN-Rhu4cIJmP03yH7sFBYLDUTpOSdNxcpOAp2jxGXTA1OU6J-oXNYwgQnjNSsU14j0jX5ZUdhzWGGjJbmAv72UypIPIZpPdMgnihMuxB93s_pJXnmYEr46td9Tb7efPiy_VTdff54u313VxnZD7mSqlUKRcfFYK3sHFgHYnR9ZwfZuw6EaKFrRcuEVcj7sXdCyQ6axkkuRhyaa_L2wr1fxxmtKaNEmPR99HP5kA7g9b8vi9_rXTjqglSMywJQF4CJIaWI7tHLmT6Hog_6Tyj6HIpmrS6hFOvrv3s_Gn-nUAreXwqwbODoMepkPC4GrY9osrbB_7_LD68wqUQ</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Zhang, Zhen</creator><creator>Bedder, Matthew</creator><creator>Smith, Stephen L.</creator><creator>Walker, Dawn</creator><creator>Shabir, Saqib</creator><creator>Southgate, Jennifer</creator><general>Elsevier Ireland Ltd</general><general>Elsevier Science Ireland</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1361-408X</orcidid><orcidid>https://orcid.org/0000-0003-0062-6399</orcidid></search><sort><creationdate>201608</creationdate><title>Characterization and classification of adherent cells in monolayer culture using automated tracking and evolutionary algorithms</title><author>Zhang, Zhen ; Bedder, Matthew ; Smith, Stephen L. ; Walker, Dawn ; Shabir, Saqib ; Southgate, Jennifer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-48588e26129dd46fadfa2bf76d947f6a225a652502d8e17b7f2846a33f412be93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adenosine Triphosphate - pharmacology</topic><topic>Algorithms</topic><topic>Cell Adhesion</topic><topic>Cell Count</topic><topic>Cell Culture Techniques</topic><topic>Cell Line</topic><topic>Cell Movement - drug effects</topic><topic>Cell Tracking - methods</topic><topic>Epithelial Cells - classification</topic><topic>Epithelial Cells - drug effects</topic><topic>Epithelial Cells - metabolism</topic><topic>Gene Regulatory Networks - drug effects</topic><topic>Humans</topic><topic>Microscopy, Video - methods</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pyridoxal Phosphate - analogs & derivatives</topic><topic>Pyridoxal Phosphate - pharmacology</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - genetics</topic><topic>Time-Lapse Imaging - methods</topic><topic>Urothelium - cytology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Bedder, Matthew</creatorcontrib><creatorcontrib>Smith, Stephen L.</creatorcontrib><creatorcontrib>Walker, Dawn</creatorcontrib><creatorcontrib>Shabir, Saqib</creatorcontrib><creatorcontrib>Southgate, Jennifer</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioSystems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhen</au><au>Bedder, Matthew</au><au>Smith, Stephen L.</au><au>Walker, Dawn</au><au>Shabir, Saqib</au><au>Southgate, Jennifer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization and classification of adherent cells in monolayer culture using automated tracking and evolutionary algorithms</atitle><jtitle>BioSystems</jtitle><addtitle>Biosystems</addtitle><date>2016-08</date><risdate>2016</risdate><volume>146</volume><spage>110</spage><epage>121</epage><pages>110-121</pages><issn>0303-2647</issn><eissn>1872-8324</eissn><abstract>This paper presents a novel method for tracking and characterizing adherent cells in monolayer culture. A system of cell tracking employing computer vision techniques was applied to time-lapse videos of replicate normal human uro-epithelial cell cultures exposed to different concentrations of adenosine triphosphate (ATP) and a selective purinergic P2X antagonist (PPADS), acquired over a 24h period. Subsequent analysis following feature extraction demonstrated the ability of the technique to successfully separate the modulated classes of cell using evolutionary algorithms. Specifically, a Cartesian Genetic Program (CGP) network was evolved that identified average migration speed, in-contact angular velocity, cohesivity and average cell clump size as the principal features contributing to the separation. Our approach not only provides non-biased and parsimonious insight into modulated class behaviours, but can be extracted as mathematical formulae for the parameterization of computational models.</abstract><cop>Ireland</cop><pub>Elsevier Ireland Ltd</pub><pmid>27267455</pmid><doi>10.1016/j.biosystems.2016.05.009</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1361-408X</orcidid><orcidid>https://orcid.org/0000-0003-0062-6399</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0303-2647 |
ispartof | BioSystems, 2016-08, Vol.146, p.110-121 |
issn | 0303-2647 1872-8324 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5028014 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Adenosine Triphosphate - pharmacology Algorithms Cell Adhesion Cell Count Cell Culture Techniques Cell Line Cell Movement - drug effects Cell Tracking - methods Epithelial Cells - classification Epithelial Cells - drug effects Epithelial Cells - metabolism Gene Regulatory Networks - drug effects Humans Microscopy, Video - methods Pattern Recognition, Automated - methods Pyridoxal Phosphate - analogs & derivatives Pyridoxal Phosphate - pharmacology Signal Transduction - drug effects Signal Transduction - genetics Time-Lapse Imaging - methods Urothelium - cytology |
title | Characterization and classification of adherent cells in monolayer culture using automated tracking and evolutionary algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A14%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20and%20classification%20of%20adherent%20cells%20in%20monolayer%20culture%20using%20automated%20tracking%20and%20evolutionary%20algorithms&rft.jtitle=BioSystems&rft.au=Zhang,%20Zhen&rft.date=2016-08&rft.volume=146&rft.spage=110&rft.epage=121&rft.pages=110-121&rft.issn=0303-2647&rft.eissn=1872-8324&rft_id=info:doi/10.1016/j.biosystems.2016.05.009&rft_dat=%3Cpubmed_cross%3E27267455%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/27267455&rft_els_id=S0303264716300727&rfr_iscdi=true |