Conserved methionine dictates substrate preference in Nramp-family divalent metal transporters

Natural resistance-associated macrophage protein (Nramp) family transporters catalyze uptake of essential divalent transition metals like iron and manganese. To discriminate against abundant competitors, the Nramp metal-binding site should favor softer transition metals, which interact either covale...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2016-09, Vol.113 (37), p.10310-10315
Hauptverfasser: Bozzi, Aaron T., Bane, Lukas B., Weihofen, Wilhelm A., McCabe, Anne L., Singharoy, Abhishek, Chipot, Christophe J., Schulten, Klaus, Gaudet, Rachelle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10315
container_issue 37
container_start_page 10310
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 113
creator Bozzi, Aaron T.
Bane, Lukas B.
Weihofen, Wilhelm A.
McCabe, Anne L.
Singharoy, Abhishek
Chipot, Christophe J.
Schulten, Klaus
Gaudet, Rachelle
description Natural resistance-associated macrophage protein (Nramp) family transporters catalyze uptake of essential divalent transition metals like iron and manganese. To discriminate against abundant competitors, the Nramp metal-binding site should favor softer transition metals, which interact either covalently or ionically with coordinating molecules, over hard calcium and magnesium, which interact mainly ionically. The metal-binding site contains an unusual, but conserved, methionine, and its sulfur coordinates transition metal substrates, suggesting a vital role in their transport. Using a bacterial Nramp model system, we show that, surprisingly, this conserved methionine is dispensable for transport of the physiological manganese substrate and similar divalents iron and cobalt, with several small amino acid replacements still enabling robust uptake. Moreover, the methionine sulfur’s presence makes the toxic metal cadmium a preferred substrate. However, a methionine-to-alanine substitution enables transport of calcium and magnesium. Thus, the putative evolutionary pressure to maintain the Nramp metal-binding methionine likely exists because it—more effectively than any other amino acid—increases selectivity for low-abundance transition metal transport in the presence of high-abundance divalents like calcium and magnesium.
doi_str_mv 10.1073/pnas.1607734113
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5027461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26471774</jstor_id><sourcerecordid>26471774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-2953a973fff3b7af57d432039ed7d594c7bfb553d833c8ff4a427238a492d8243</originalsourceid><addsrcrecordid>eNpdkctr3DAQxkVoSbZpzj0lGHrpxcnotZIuhbD0BaG9tNcK2ZYaLbbkSPJC_vtq2bza0wzMbz6-mQ-hdxguMQh6NQeTL_EahKAMY3qEVhgUbtdMwSu0AiCilYywE_Qm5y0AKC7hGJ0QwQWVDFbo9yaGbNPODs1ky62PwQfbDL4vptjc5KXLJdW2mZN1NtnQ28aH5nsy09w6M_nxvtI7M9pQ9gpmbCof8hxTsSm_Ra-dGbM9e6in6NfnTz83X9ubH1--ba5v2p6DKi1RnBolqHOOdsI4LgZGCVBlBzFwxXrRuY5zOkhKe-kcM4wIQqVhigySMHqKPh5056Wb7NBXN8mMek5-MuleR-P1v5Pgb_WfuNO8voitcRX48CCQ4t1ic9GTz70dRxNsXLLGEisFTMIeff8fuo1LCvW8SlVTkgtQlbo6UH2KOdfnPZnBoPfZ6X12-jm7unHx8oYn_jGsCpwfgG0uMT3P10xgIRj9C-kEoTM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1823885709</pqid></control><display><type>article</type><title>Conserved methionine dictates substrate preference in Nramp-family divalent metal transporters</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Bozzi, Aaron T. ; Bane, Lukas B. ; Weihofen, Wilhelm A. ; McCabe, Anne L. ; Singharoy, Abhishek ; Chipot, Christophe J. ; Schulten, Klaus ; Gaudet, Rachelle</creator><creatorcontrib>Bozzi, Aaron T. ; Bane, Lukas B. ; Weihofen, Wilhelm A. ; McCabe, Anne L. ; Singharoy, Abhishek ; Chipot, Christophe J. ; Schulten, Klaus ; Gaudet, Rachelle</creatorcontrib><description>Natural resistance-associated macrophage protein (Nramp) family transporters catalyze uptake of essential divalent transition metals like iron and manganese. To discriminate against abundant competitors, the Nramp metal-binding site should favor softer transition metals, which interact either covalently or ionically with coordinating molecules, over hard calcium and magnesium, which interact mainly ionically. The metal-binding site contains an unusual, but conserved, methionine, and its sulfur coordinates transition metal substrates, suggesting a vital role in their transport. Using a bacterial Nramp model system, we show that, surprisingly, this conserved methionine is dispensable for transport of the physiological manganese substrate and similar divalents iron and cobalt, with several small amino acid replacements still enabling robust uptake. Moreover, the methionine sulfur’s presence makes the toxic metal cadmium a preferred substrate. However, a methionine-to-alanine substitution enables transport of calcium and magnesium. Thus, the putative evolutionary pressure to maintain the Nramp metal-binding methionine likely exists because it—more effectively than any other amino acid—increases selectivity for low-abundance transition metal transport in the presence of high-abundance divalents like calcium and magnesium.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1607734113</identifier><identifier>PMID: 27573840</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino acids ; Bacteria ; Binding sites ; Biological Sciences ; Cadmium ; Calcium ; Cobalt ; Magnesium ; Manganese ; Metals ; Molecules ; Proteins ; Substrates ; Sulfur</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-09, Vol.113 (37), p.10310-10315</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Sep 13, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-2953a973fff3b7af57d432039ed7d594c7bfb553d833c8ff4a427238a492d8243</citedby><cites>FETCH-LOGICAL-c509t-2953a973fff3b7af57d432039ed7d594c7bfb553d833c8ff4a427238a492d8243</cites><orcidid>0000-0002-9177-054X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26471774$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26471774$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27573840$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bozzi, Aaron T.</creatorcontrib><creatorcontrib>Bane, Lukas B.</creatorcontrib><creatorcontrib>Weihofen, Wilhelm A.</creatorcontrib><creatorcontrib>McCabe, Anne L.</creatorcontrib><creatorcontrib>Singharoy, Abhishek</creatorcontrib><creatorcontrib>Chipot, Christophe J.</creatorcontrib><creatorcontrib>Schulten, Klaus</creatorcontrib><creatorcontrib>Gaudet, Rachelle</creatorcontrib><title>Conserved methionine dictates substrate preference in Nramp-family divalent metal transporters</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Natural resistance-associated macrophage protein (Nramp) family transporters catalyze uptake of essential divalent transition metals like iron and manganese. To discriminate against abundant competitors, the Nramp metal-binding site should favor softer transition metals, which interact either covalently or ionically with coordinating molecules, over hard calcium and magnesium, which interact mainly ionically. The metal-binding site contains an unusual, but conserved, methionine, and its sulfur coordinates transition metal substrates, suggesting a vital role in their transport. Using a bacterial Nramp model system, we show that, surprisingly, this conserved methionine is dispensable for transport of the physiological manganese substrate and similar divalents iron and cobalt, with several small amino acid replacements still enabling robust uptake. Moreover, the methionine sulfur’s presence makes the toxic metal cadmium a preferred substrate. However, a methionine-to-alanine substitution enables transport of calcium and magnesium. Thus, the putative evolutionary pressure to maintain the Nramp metal-binding methionine likely exists because it—more effectively than any other amino acid—increases selectivity for low-abundance transition metal transport in the presence of high-abundance divalents like calcium and magnesium.</description><subject>Amino acids</subject><subject>Bacteria</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Cadmium</subject><subject>Calcium</subject><subject>Cobalt</subject><subject>Magnesium</subject><subject>Manganese</subject><subject>Metals</subject><subject>Molecules</subject><subject>Proteins</subject><subject>Substrates</subject><subject>Sulfur</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkctr3DAQxkVoSbZpzj0lGHrpxcnotZIuhbD0BaG9tNcK2ZYaLbbkSPJC_vtq2bza0wzMbz6-mQ-hdxguMQh6NQeTL_EahKAMY3qEVhgUbtdMwSu0AiCilYywE_Qm5y0AKC7hGJ0QwQWVDFbo9yaGbNPODs1ky62PwQfbDL4vptjc5KXLJdW2mZN1NtnQ28aH5nsy09w6M_nxvtI7M9pQ9gpmbCof8hxTsSm_Ra-dGbM9e6in6NfnTz83X9ubH1--ba5v2p6DKi1RnBolqHOOdsI4LgZGCVBlBzFwxXrRuY5zOkhKe-kcM4wIQqVhigySMHqKPh5056Wb7NBXN8mMek5-MuleR-P1v5Pgb_WfuNO8voitcRX48CCQ4t1ic9GTz70dRxNsXLLGEisFTMIeff8fuo1LCvW8SlVTkgtQlbo6UH2KOdfnPZnBoPfZ6X12-jm7unHx8oYn_jGsCpwfgG0uMT3P10xgIRj9C-kEoTM</recordid><startdate>20160913</startdate><enddate>20160913</enddate><creator>Bozzi, Aaron T.</creator><creator>Bane, Lukas B.</creator><creator>Weihofen, Wilhelm A.</creator><creator>McCabe, Anne L.</creator><creator>Singharoy, Abhishek</creator><creator>Chipot, Christophe J.</creator><creator>Schulten, Klaus</creator><creator>Gaudet, Rachelle</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9177-054X</orcidid></search><sort><creationdate>20160913</creationdate><title>Conserved methionine dictates substrate preference in Nramp-family divalent metal transporters</title><author>Bozzi, Aaron T. ; Bane, Lukas B. ; Weihofen, Wilhelm A. ; McCabe, Anne L. ; Singharoy, Abhishek ; Chipot, Christophe J. ; Schulten, Klaus ; Gaudet, Rachelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-2953a973fff3b7af57d432039ed7d594c7bfb553d833c8ff4a427238a492d8243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino acids</topic><topic>Bacteria</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Cadmium</topic><topic>Calcium</topic><topic>Cobalt</topic><topic>Magnesium</topic><topic>Manganese</topic><topic>Metals</topic><topic>Molecules</topic><topic>Proteins</topic><topic>Substrates</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bozzi, Aaron T.</creatorcontrib><creatorcontrib>Bane, Lukas B.</creatorcontrib><creatorcontrib>Weihofen, Wilhelm A.</creatorcontrib><creatorcontrib>McCabe, Anne L.</creatorcontrib><creatorcontrib>Singharoy, Abhishek</creatorcontrib><creatorcontrib>Chipot, Christophe J.</creatorcontrib><creatorcontrib>Schulten, Klaus</creatorcontrib><creatorcontrib>Gaudet, Rachelle</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bozzi, Aaron T.</au><au>Bane, Lukas B.</au><au>Weihofen, Wilhelm A.</au><au>McCabe, Anne L.</au><au>Singharoy, Abhishek</au><au>Chipot, Christophe J.</au><au>Schulten, Klaus</au><au>Gaudet, Rachelle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conserved methionine dictates substrate preference in Nramp-family divalent metal transporters</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-09-13</date><risdate>2016</risdate><volume>113</volume><issue>37</issue><spage>10310</spage><epage>10315</epage><pages>10310-10315</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Natural resistance-associated macrophage protein (Nramp) family transporters catalyze uptake of essential divalent transition metals like iron and manganese. To discriminate against abundant competitors, the Nramp metal-binding site should favor softer transition metals, which interact either covalently or ionically with coordinating molecules, over hard calcium and magnesium, which interact mainly ionically. The metal-binding site contains an unusual, but conserved, methionine, and its sulfur coordinates transition metal substrates, suggesting a vital role in their transport. Using a bacterial Nramp model system, we show that, surprisingly, this conserved methionine is dispensable for transport of the physiological manganese substrate and similar divalents iron and cobalt, with several small amino acid replacements still enabling robust uptake. Moreover, the methionine sulfur’s presence makes the toxic metal cadmium a preferred substrate. However, a methionine-to-alanine substitution enables transport of calcium and magnesium. Thus, the putative evolutionary pressure to maintain the Nramp metal-binding methionine likely exists because it—more effectively than any other amino acid—increases selectivity for low-abundance transition metal transport in the presence of high-abundance divalents like calcium and magnesium.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>27573840</pmid><doi>10.1073/pnas.1607734113</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9177-054X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2016-09, Vol.113 (37), p.10310-10315
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5027461
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino acids
Bacteria
Binding sites
Biological Sciences
Cadmium
Calcium
Cobalt
Magnesium
Manganese
Metals
Molecules
Proteins
Substrates
Sulfur
title Conserved methionine dictates substrate preference in Nramp-family divalent metal transporters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A55%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conserved%20methionine%20dictates%20substrate%20preference%20in%20Nramp-family%20divalent%20metal%20transporters&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Bozzi,%20Aaron%20T.&rft.date=2016-09-13&rft.volume=113&rft.issue=37&rft.spage=10310&rft.epage=10315&rft.pages=10310-10315&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1607734113&rft_dat=%3Cjstor_pubme%3E26471774%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1823885709&rft_id=info:pmid/27573840&rft_jstor_id=26471774&rfr_iscdi=true