Application of intermittent negative pressure on the lower extremity and its effect on macro‐ and microcirculation in the foot of healthy volunteers
Intermittent negative pressure (INP) applied to the lower leg and foot may increase peripheral circulation. However, it is not clear how different patterns of INP affect macro‐ and microcirculation in the foot. The aim of this study was therefore to determine the effect of different patterns of nega...
Gespeichert in:
Veröffentlicht in: | Physiological reports 2016-09, Vol.4 (17), p.e12911-n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 17 |
container_start_page | e12911 |
container_title | Physiological reports |
container_volume | 4 |
creator | Sundby, Øyvind H. Høiseth, Lars Øivind Mathiesen, Iacob Jørgensen, Jørgen J. Weedon‐Fekjær, Harald Hisdal, Jonny |
description | Intermittent negative pressure (INP) applied to the lower leg and foot may increase peripheral circulation. However, it is not clear how different patterns of INP affect macro‐ and microcirculation in the foot. The aim of this study was therefore to determine the effect of different patterns of negative pressure on foot perfusion in healthy volunteers. We hypothesized that short periods with INP would elicit an increase in foot perfusion compared to no negative pressure. In 23 healthy volunteers, we continuously recorded blood flow velocity in a distal foot artery, skin blood flow, heart rate, and blood pressure during application of different patterns of negative pressure (−40 mmHg) to the lower leg. Each participant had their right leg inside an airtight chamber connected to an INP generator. After a baseline period at atmospheric pressure, we applied four different 120 sec sequences with either constant negative pressure or different INP patterns, in a randomized order. The results showed corresponding fluctuations in blood flow velocity and skin blood flow throughout the INP sequences. Blood flow velocity reached a maximum at 4 sec after the onset of negative pressure (average 44% increase above baseline, P |
doi_str_mv | 10.14814/phy2.12911 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5027346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1820597463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5091-fa3ef93f8e93f381075ee6e1200bdde32288d2820768df01aa55121bfe1c09e13</originalsourceid><addsrcrecordid>eNqNks1u1DAUhSMEolXpij1YYoNUTfG1xxNng1RVlCJVggVIsLI8yXXjyomD7UzJjkdgxQPyJHgmbVVYIDb-0f18jq99iuIp0GNYSli-GtqJHQOrAB4U-4wKWEgoPz-8t94rDmO8opQC5byiy8fFHitXnObz-8XPk2FwttbJ-p54Q2yfMHQ2JewT6fEyFzZIhoAxjgFJhlKLxPlrDAS_pYCZnYjuG2JTJGgM1mlLdboO_tf3H7tSZ_OmtqEe3WxkZxnjfdqatqhdaiey8W7M_hjik-KR0S7i4c18UHw6e_Px9Hxx8f7tu9OTi0UtaAULozmaihuJeeASaCkQVwiM0nXTIGdMyoZJRsuVbAwFrYUABmuDUNMKgR8Ur2fdYVx32NS566CdGoLtdJiU11b9Weltqy79RgnKSr5cZYHns0AdbEy2V70PWgGVginBGYhMvLyxCP7riDGpzsYandM9-jEqkKzMvydY9T8oFVWZbTP64i_0yo-hz2-lctPVqqwqXmbq6PZ2PsaA5q4zoGqXH7XNj9rlJ9PP7j_GHXublgywGbi2Dqd_aakP51_YrPob3cbS8A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2289679937</pqid></control><display><type>article</type><title>Application of intermittent negative pressure on the lower extremity and its effect on macro‐ and microcirculation in the foot of healthy volunteers</title><source>MEDLINE</source><source>NORA - Norwegian Open Research Archives</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Sundby, Øyvind H. ; Høiseth, Lars Øivind ; Mathiesen, Iacob ; Jørgensen, Jørgen J. ; Weedon‐Fekjær, Harald ; Hisdal, Jonny</creator><creatorcontrib>Sundby, Øyvind H. ; Høiseth, Lars Øivind ; Mathiesen, Iacob ; Jørgensen, Jørgen J. ; Weedon‐Fekjær, Harald ; Hisdal, Jonny</creatorcontrib><description>Intermittent negative pressure (INP) applied to the lower leg and foot may increase peripheral circulation. However, it is not clear how different patterns of INP affect macro‐ and microcirculation in the foot. The aim of this study was therefore to determine the effect of different patterns of negative pressure on foot perfusion in healthy volunteers. We hypothesized that short periods with INP would elicit an increase in foot perfusion compared to no negative pressure. In 23 healthy volunteers, we continuously recorded blood flow velocity in a distal foot artery, skin blood flow, heart rate, and blood pressure during application of different patterns of negative pressure (−40 mmHg) to the lower leg. Each participant had their right leg inside an airtight chamber connected to an INP generator. After a baseline period at atmospheric pressure, we applied four different 120 sec sequences with either constant negative pressure or different INP patterns, in a randomized order. The results showed corresponding fluctuations in blood flow velocity and skin blood flow throughout the INP sequences. Blood flow velocity reached a maximum at 4 sec after the onset of negative pressure (average 44% increase above baseline, P < 0.001). Skin blood flow and skin temperature increased during all INP sequences (P < 0.001). During constant negative pressure, average blood flow velocity, skin blood flow, and skin temperature decreased (P < 0.001). In conclusion, we observed increased foot perfusion in healthy volunteers after the application of INP on the lower limb.
In conclusion, we observed increased foot perfusion in healthy volunteers after the application of INP to the lower leg and foot.</description><identifier>ISSN: 2051-817X</identifier><identifier>EISSN: 2051-817X</identifier><identifier>DOI: 10.14814/phy2.12911</identifier><identifier>PMID: 27630148</identifier><language>eng</language><publisher>United States: John Wiley & Sons, Inc</publisher><subject>Adult ; Alcohol ; Arterial blood flow velocity ; Blood flow ; Blood Flow Velocity - physiology ; Blood Pressure ; Circulation ; Disease ; dorsal pedis artery ; Feet ; Female ; Flow velocity ; Foot - blood supply ; Foot - physiology ; Healthy Volunteers ; Heart rate ; Humans ; intermittent negative pressure ; laser doppler fluxmetry ; Laser-Doppler Flowmetry - instrumentation ; Laser-Doppler Flowmetry - methods ; Leg ; Lower Extremity - blood supply ; Lower Extremity - physiology ; Male ; Microcirculation ; Microcirculation - physiology ; Negative-Pressure Wound Therapy - methods ; Original Research ; Perfusion ; Peripheral Arterial Disease - therapy ; Physiology ; Pressure - adverse effects ; Skin ; Skin - blood supply ; skin blood flow ; Veins & arteries</subject><ispartof>Physiological reports, 2016-09, Vol.4 (17), p.e12911-n/a</ispartof><rights>2016 The Authors. published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.</rights><rights>2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.</rights><rights>2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5091-fa3ef93f8e93f381075ee6e1200bdde32288d2820768df01aa55121bfe1c09e13</citedby><cites>FETCH-LOGICAL-c5091-fa3ef93f8e93f381075ee6e1200bdde32288d2820768df01aa55121bfe1c09e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5027346/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5027346/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,1412,11543,26548,27905,27906,45555,45556,46033,46457,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27630148$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sundby, Øyvind H.</creatorcontrib><creatorcontrib>Høiseth, Lars Øivind</creatorcontrib><creatorcontrib>Mathiesen, Iacob</creatorcontrib><creatorcontrib>Jørgensen, Jørgen J.</creatorcontrib><creatorcontrib>Weedon‐Fekjær, Harald</creatorcontrib><creatorcontrib>Hisdal, Jonny</creatorcontrib><title>Application of intermittent negative pressure on the lower extremity and its effect on macro‐ and microcirculation in the foot of healthy volunteers</title><title>Physiological reports</title><addtitle>Physiol Rep</addtitle><description>Intermittent negative pressure (INP) applied to the lower leg and foot may increase peripheral circulation. However, it is not clear how different patterns of INP affect macro‐ and microcirculation in the foot. The aim of this study was therefore to determine the effect of different patterns of negative pressure on foot perfusion in healthy volunteers. We hypothesized that short periods with INP would elicit an increase in foot perfusion compared to no negative pressure. In 23 healthy volunteers, we continuously recorded blood flow velocity in a distal foot artery, skin blood flow, heart rate, and blood pressure during application of different patterns of negative pressure (−40 mmHg) to the lower leg. Each participant had their right leg inside an airtight chamber connected to an INP generator. After a baseline period at atmospheric pressure, we applied four different 120 sec sequences with either constant negative pressure or different INP patterns, in a randomized order. The results showed corresponding fluctuations in blood flow velocity and skin blood flow throughout the INP sequences. Blood flow velocity reached a maximum at 4 sec after the onset of negative pressure (average 44% increase above baseline, P < 0.001). Skin blood flow and skin temperature increased during all INP sequences (P < 0.001). During constant negative pressure, average blood flow velocity, skin blood flow, and skin temperature decreased (P < 0.001). In conclusion, we observed increased foot perfusion in healthy volunteers after the application of INP on the lower limb.
In conclusion, we observed increased foot perfusion in healthy volunteers after the application of INP to the lower leg and foot.</description><subject>Adult</subject><subject>Alcohol</subject><subject>Arterial blood flow velocity</subject><subject>Blood flow</subject><subject>Blood Flow Velocity - physiology</subject><subject>Blood Pressure</subject><subject>Circulation</subject><subject>Disease</subject><subject>dorsal pedis artery</subject><subject>Feet</subject><subject>Female</subject><subject>Flow velocity</subject><subject>Foot - blood supply</subject><subject>Foot - physiology</subject><subject>Healthy Volunteers</subject><subject>Heart rate</subject><subject>Humans</subject><subject>intermittent negative pressure</subject><subject>laser doppler fluxmetry</subject><subject>Laser-Doppler Flowmetry - instrumentation</subject><subject>Laser-Doppler Flowmetry - methods</subject><subject>Leg</subject><subject>Lower Extremity - blood supply</subject><subject>Lower Extremity - physiology</subject><subject>Male</subject><subject>Microcirculation</subject><subject>Microcirculation - physiology</subject><subject>Negative-Pressure Wound Therapy - methods</subject><subject>Original Research</subject><subject>Perfusion</subject><subject>Peripheral Arterial Disease - therapy</subject><subject>Physiology</subject><subject>Pressure - adverse effects</subject><subject>Skin</subject><subject>Skin - blood supply</subject><subject>skin blood flow</subject><subject>Veins & arteries</subject><issn>2051-817X</issn><issn>2051-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>3HK</sourceid><recordid>eNqNks1u1DAUhSMEolXpij1YYoNUTfG1xxNng1RVlCJVggVIsLI8yXXjyomD7UzJjkdgxQPyJHgmbVVYIDb-0f18jq99iuIp0GNYSli-GtqJHQOrAB4U-4wKWEgoPz-8t94rDmO8opQC5byiy8fFHitXnObz-8XPk2FwttbJ-p54Q2yfMHQ2JewT6fEyFzZIhoAxjgFJhlKLxPlrDAS_pYCZnYjuG2JTJGgM1mlLdboO_tf3H7tSZ_OmtqEe3WxkZxnjfdqatqhdaiey8W7M_hjik-KR0S7i4c18UHw6e_Px9Hxx8f7tu9OTi0UtaAULozmaihuJeeASaCkQVwiM0nXTIGdMyoZJRsuVbAwFrYUABmuDUNMKgR8Ur2fdYVx32NS566CdGoLtdJiU11b9Weltqy79RgnKSr5cZYHns0AdbEy2V70PWgGVginBGYhMvLyxCP7riDGpzsYandM9-jEqkKzMvydY9T8oFVWZbTP64i_0yo-hz2-lctPVqqwqXmbq6PZ2PsaA5q4zoGqXH7XNj9rlJ9PP7j_GHXublgywGbi2Dqd_aakP51_YrPob3cbS8A</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Sundby, Øyvind H.</creator><creator>Høiseth, Lars Øivind</creator><creator>Mathiesen, Iacob</creator><creator>Jørgensen, Jørgen J.</creator><creator>Weedon‐Fekjær, Harald</creator><creator>Hisdal, Jonny</creator><general>John Wiley & Sons, Inc</general><general>The Physiological Society and the American Physiological Society</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>3HK</scope><scope>5PM</scope></search><sort><creationdate>201609</creationdate><title>Application of intermittent negative pressure on the lower extremity and its effect on macro‐ and microcirculation in the foot of healthy volunteers</title><author>Sundby, Øyvind H. ; Høiseth, Lars Øivind ; Mathiesen, Iacob ; Jørgensen, Jørgen J. ; Weedon‐Fekjær, Harald ; Hisdal, Jonny</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5091-fa3ef93f8e93f381075ee6e1200bdde32288d2820768df01aa55121bfe1c09e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adult</topic><topic>Alcohol</topic><topic>Arterial blood flow velocity</topic><topic>Blood flow</topic><topic>Blood Flow Velocity - physiology</topic><topic>Blood Pressure</topic><topic>Circulation</topic><topic>Disease</topic><topic>dorsal pedis artery</topic><topic>Feet</topic><topic>Female</topic><topic>Flow velocity</topic><topic>Foot - blood supply</topic><topic>Foot - physiology</topic><topic>Healthy Volunteers</topic><topic>Heart rate</topic><topic>Humans</topic><topic>intermittent negative pressure</topic><topic>laser doppler fluxmetry</topic><topic>Laser-Doppler Flowmetry - instrumentation</topic><topic>Laser-Doppler Flowmetry - methods</topic><topic>Leg</topic><topic>Lower Extremity - blood supply</topic><topic>Lower Extremity - physiology</topic><topic>Male</topic><topic>Microcirculation</topic><topic>Microcirculation - physiology</topic><topic>Negative-Pressure Wound Therapy - methods</topic><topic>Original Research</topic><topic>Perfusion</topic><topic>Peripheral Arterial Disease - therapy</topic><topic>Physiology</topic><topic>Pressure - adverse effects</topic><topic>Skin</topic><topic>Skin - blood supply</topic><topic>skin blood flow</topic><topic>Veins & arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sundby, Øyvind H.</creatorcontrib><creatorcontrib>Høiseth, Lars Øivind</creatorcontrib><creatorcontrib>Mathiesen, Iacob</creatorcontrib><creatorcontrib>Jørgensen, Jørgen J.</creatorcontrib><creatorcontrib>Weedon‐Fekjær, Harald</creatorcontrib><creatorcontrib>Hisdal, Jonny</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physiological reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sundby, Øyvind H.</au><au>Høiseth, Lars Øivind</au><au>Mathiesen, Iacob</au><au>Jørgensen, Jørgen J.</au><au>Weedon‐Fekjær, Harald</au><au>Hisdal, Jonny</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of intermittent negative pressure on the lower extremity and its effect on macro‐ and microcirculation in the foot of healthy volunteers</atitle><jtitle>Physiological reports</jtitle><addtitle>Physiol Rep</addtitle><date>2016-09</date><risdate>2016</risdate><volume>4</volume><issue>17</issue><spage>e12911</spage><epage>n/a</epage><pages>e12911-n/a</pages><issn>2051-817X</issn><eissn>2051-817X</eissn><abstract>Intermittent negative pressure (INP) applied to the lower leg and foot may increase peripheral circulation. However, it is not clear how different patterns of INP affect macro‐ and microcirculation in the foot. The aim of this study was therefore to determine the effect of different patterns of negative pressure on foot perfusion in healthy volunteers. We hypothesized that short periods with INP would elicit an increase in foot perfusion compared to no negative pressure. In 23 healthy volunteers, we continuously recorded blood flow velocity in a distal foot artery, skin blood flow, heart rate, and blood pressure during application of different patterns of negative pressure (−40 mmHg) to the lower leg. Each participant had their right leg inside an airtight chamber connected to an INP generator. After a baseline period at atmospheric pressure, we applied four different 120 sec sequences with either constant negative pressure or different INP patterns, in a randomized order. The results showed corresponding fluctuations in blood flow velocity and skin blood flow throughout the INP sequences. Blood flow velocity reached a maximum at 4 sec after the onset of negative pressure (average 44% increase above baseline, P < 0.001). Skin blood flow and skin temperature increased during all INP sequences (P < 0.001). During constant negative pressure, average blood flow velocity, skin blood flow, and skin temperature decreased (P < 0.001). In conclusion, we observed increased foot perfusion in healthy volunteers after the application of INP on the lower limb.
In conclusion, we observed increased foot perfusion in healthy volunteers after the application of INP to the lower leg and foot.</abstract><cop>United States</cop><pub>John Wiley & Sons, Inc</pub><pmid>27630148</pmid><doi>10.14814/phy2.12911</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2051-817X |
ispartof | Physiological reports, 2016-09, Vol.4 (17), p.e12911-n/a |
issn | 2051-817X 2051-817X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5027346 |
source | MEDLINE; NORA - Norwegian Open Research Archives; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Adult Alcohol Arterial blood flow velocity Blood flow Blood Flow Velocity - physiology Blood Pressure Circulation Disease dorsal pedis artery Feet Female Flow velocity Foot - blood supply Foot - physiology Healthy Volunteers Heart rate Humans intermittent negative pressure laser doppler fluxmetry Laser-Doppler Flowmetry - instrumentation Laser-Doppler Flowmetry - methods Leg Lower Extremity - blood supply Lower Extremity - physiology Male Microcirculation Microcirculation - physiology Negative-Pressure Wound Therapy - methods Original Research Perfusion Peripheral Arterial Disease - therapy Physiology Pressure - adverse effects Skin Skin - blood supply skin blood flow Veins & arteries |
title | Application of intermittent negative pressure on the lower extremity and its effect on macro‐ and microcirculation in the foot of healthy volunteers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A52%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20intermittent%20negative%20pressure%20on%20the%20lower%20extremity%20and%20its%20effect%20on%20macro%E2%80%90%20and%20microcirculation%20in%20the%20foot%20of%20healthy%20volunteers&rft.jtitle=Physiological%20reports&rft.au=Sundby,%20%C3%98yvind%20H.&rft.date=2016-09&rft.volume=4&rft.issue=17&rft.spage=e12911&rft.epage=n/a&rft.pages=e12911-n/a&rft.issn=2051-817X&rft.eissn=2051-817X&rft_id=info:doi/10.14814/phy2.12911&rft_dat=%3Cproquest_pubme%3E1820597463%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2289679937&rft_id=info:pmid/27630148&rfr_iscdi=true |