Quantifying the impact of different approaches for handling continuous predictors on the performance of a prognostic model
Continuous predictors are routinely encountered when developing a prognostic model. Investigators, who are often non‐statisticians, must decide how to handle continuous predictors in their models. Categorising continuous measurements into two or more categories has been widely discredited, yet is st...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 2016-10, Vol.35 (23), p.4124-4135 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4135 |
---|---|
container_issue | 23 |
container_start_page | 4124 |
container_title | Statistics in medicine |
container_volume | 35 |
creator | Collins, Gary S. Ogundimu, Emmanuel O. Cook, Jonathan A. Manach, Yannick Le Altman, Douglas G. |
description | Continuous predictors are routinely encountered when developing a prognostic model. Investigators, who are often non‐statisticians, must decide how to handle continuous predictors in their models. Categorising continuous measurements into two or more categories has been widely discredited, yet is still frequently done because of its simplicity, investigator ignorance of the potential impact and of suitable alternatives, or to facilitate model uptake. We examine three broad approaches for handling continuous predictors on the performance of a prognostic model, including various methods of categorising predictors, modelling a linear relationship between the predictor and outcome and modelling a nonlinear relationship using fractional polynomials or restricted cubic splines. We compare the performance (measured by the c‐index, calibration and net benefit) of prognostic models built using each approach, evaluating them using separate data from that used to build them. We show that categorising continuous predictors produces models with poor predictive performance and poor clinical usefulness. Categorising continuous predictors is unnecessary, biologically implausible and inefficient and should not be used in prognostic model development. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. |
doi_str_mv | 10.1002/sim.6986 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5026162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4189911311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4766-8fcd835a8b530fd1a27fe2846a0773ddf6a841b7b40a666f489af34538b014513</originalsourceid><addsrcrecordid>eNp1kUtv1DAURi0EokNB4hcgS2zYpPgRP7JBQiMoVQcQaoGl5Tj2jEtip3YCDL8eTzsMD4nVXfj43PvpA-AxRicYIfI8--GEN5LfAQuMGlEhwuRdsEBEiIoLzI7Ag5yvEMKYEXEfHBGBG9pguQA_Psw6TN5tfVjDaWOhH0ZtJhgd7LxzNtkwQT2OKWqzsRm6mOBGh67f8SaWr2GOc4Zjsp03U0wZxnAjGm0q8KCDsTubLkhch5gnb-AQO9s_BPec7rN9tJ_H4OPrV5fLN9Xq_enZ8uWqMrXgvJLOdJIyLVtGkeuwJsJZImuukRC06xzXssataGukOeeulo12tGZUtgjXDNNj8OLWO87tYDtTEiXdqzH5Qaetitqrv1-C36h1_KoYIhxzUgTP9oIUr2ebJzX4bGzf62BLdoUlFqgsalBBn_6DXsU5hRKvUIQgTgitfwtNijkn6w7HYKR2hapSqNoVWtAnfx5_AH81WIDqFvjme7v9r0hdnL3dC_e8z5P9fuB1-qK4oIKpz-9O1adzSfHycqUu6E9lMbuq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1822062234</pqid></control><display><type>article</type><title>Quantifying the impact of different approaches for handling continuous predictors on the performance of a prognostic model</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Collins, Gary S. ; Ogundimu, Emmanuel O. ; Cook, Jonathan A. ; Manach, Yannick Le ; Altman, Douglas G.</creator><creatorcontrib>Collins, Gary S. ; Ogundimu, Emmanuel O. ; Cook, Jonathan A. ; Manach, Yannick Le ; Altman, Douglas G.</creatorcontrib><description>Continuous predictors are routinely encountered when developing a prognostic model. Investigators, who are often non‐statisticians, must decide how to handle continuous predictors in their models. Categorising continuous measurements into two or more categories has been widely discredited, yet is still frequently done because of its simplicity, investigator ignorance of the potential impact and of suitable alternatives, or to facilitate model uptake. We examine three broad approaches for handling continuous predictors on the performance of a prognostic model, including various methods of categorising predictors, modelling a linear relationship between the predictor and outcome and modelling a nonlinear relationship using fractional polynomials or restricted cubic splines. We compare the performance (measured by the c‐index, calibration and net benefit) of prognostic models built using each approach, evaluating them using separate data from that used to build them. We show that categorising continuous predictors produces models with poor predictive performance and poor clinical usefulness. Categorising continuous predictors is unnecessary, biologically implausible and inefficient and should not be used in prognostic model development. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.6986</identifier><identifier>PMID: 27193918</identifier><identifier>CODEN: SMEDDA</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Calibration ; Comparative analysis ; continuous predictors ; dichotomisation ; Humans ; Impact analysis ; Medical statistics ; Models, Statistical ; Polynomials ; Prognosis ; prognostic modelling</subject><ispartof>Statistics in medicine, 2016-10, Vol.35 (23), p.4124-4135</ispartof><rights>2016 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.</rights><rights>Copyright Wiley Subscription Services, Inc. Oct 15, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4766-8fcd835a8b530fd1a27fe2846a0773ddf6a841b7b40a666f489af34538b014513</citedby><cites>FETCH-LOGICAL-c4766-8fcd835a8b530fd1a27fe2846a0773ddf6a841b7b40a666f489af34538b014513</cites><orcidid>0000-0002-2772-2316</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.6986$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.6986$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27193918$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Collins, Gary S.</creatorcontrib><creatorcontrib>Ogundimu, Emmanuel O.</creatorcontrib><creatorcontrib>Cook, Jonathan A.</creatorcontrib><creatorcontrib>Manach, Yannick Le</creatorcontrib><creatorcontrib>Altman, Douglas G.</creatorcontrib><title>Quantifying the impact of different approaches for handling continuous predictors on the performance of a prognostic model</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>Continuous predictors are routinely encountered when developing a prognostic model. Investigators, who are often non‐statisticians, must decide how to handle continuous predictors in their models. Categorising continuous measurements into two or more categories has been widely discredited, yet is still frequently done because of its simplicity, investigator ignorance of the potential impact and of suitable alternatives, or to facilitate model uptake. We examine three broad approaches for handling continuous predictors on the performance of a prognostic model, including various methods of categorising predictors, modelling a linear relationship between the predictor and outcome and modelling a nonlinear relationship using fractional polynomials or restricted cubic splines. We compare the performance (measured by the c‐index, calibration and net benefit) of prognostic models built using each approach, evaluating them using separate data from that used to build them. We show that categorising continuous predictors produces models with poor predictive performance and poor clinical usefulness. Categorising continuous predictors is unnecessary, biologically implausible and inefficient and should not be used in prognostic model development. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.</description><subject>Algorithms</subject><subject>Calibration</subject><subject>Comparative analysis</subject><subject>continuous predictors</subject><subject>dichotomisation</subject><subject>Humans</subject><subject>Impact analysis</subject><subject>Medical statistics</subject><subject>Models, Statistical</subject><subject>Polynomials</subject><subject>Prognosis</subject><subject>prognostic modelling</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kUtv1DAURi0EokNB4hcgS2zYpPgRP7JBQiMoVQcQaoGl5Tj2jEtip3YCDL8eTzsMD4nVXfj43PvpA-AxRicYIfI8--GEN5LfAQuMGlEhwuRdsEBEiIoLzI7Ag5yvEMKYEXEfHBGBG9pguQA_Psw6TN5tfVjDaWOhH0ZtJhgd7LxzNtkwQT2OKWqzsRm6mOBGh67f8SaWr2GOc4Zjsp03U0wZxnAjGm0q8KCDsTubLkhch5gnb-AQO9s_BPec7rN9tJ_H4OPrV5fLN9Xq_enZ8uWqMrXgvJLOdJIyLVtGkeuwJsJZImuukRC06xzXssataGukOeeulo12tGZUtgjXDNNj8OLWO87tYDtTEiXdqzH5Qaetitqrv1-C36h1_KoYIhxzUgTP9oIUr2ebJzX4bGzf62BLdoUlFqgsalBBn_6DXsU5hRKvUIQgTgitfwtNijkn6w7HYKR2hapSqNoVWtAnfx5_AH81WIDqFvjme7v9r0hdnL3dC_e8z5P9fuB1-qK4oIKpz-9O1adzSfHycqUu6E9lMbuq</recordid><startdate>20161015</startdate><enddate>20161015</enddate><creator>Collins, Gary S.</creator><creator>Ogundimu, Emmanuel O.</creator><creator>Cook, Jonathan A.</creator><creator>Manach, Yannick Le</creator><creator>Altman, Douglas G.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2772-2316</orcidid></search><sort><creationdate>20161015</creationdate><title>Quantifying the impact of different approaches for handling continuous predictors on the performance of a prognostic model</title><author>Collins, Gary S. ; Ogundimu, Emmanuel O. ; Cook, Jonathan A. ; Manach, Yannick Le ; Altman, Douglas G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4766-8fcd835a8b530fd1a27fe2846a0773ddf6a841b7b40a666f489af34538b014513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Calibration</topic><topic>Comparative analysis</topic><topic>continuous predictors</topic><topic>dichotomisation</topic><topic>Humans</topic><topic>Impact analysis</topic><topic>Medical statistics</topic><topic>Models, Statistical</topic><topic>Polynomials</topic><topic>Prognosis</topic><topic>prognostic modelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Collins, Gary S.</creatorcontrib><creatorcontrib>Ogundimu, Emmanuel O.</creatorcontrib><creatorcontrib>Cook, Jonathan A.</creatorcontrib><creatorcontrib>Manach, Yannick Le</creatorcontrib><creatorcontrib>Altman, Douglas G.</creatorcontrib><collection>Istex</collection><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Collins, Gary S.</au><au>Ogundimu, Emmanuel O.</au><au>Cook, Jonathan A.</au><au>Manach, Yannick Le</au><au>Altman, Douglas G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying the impact of different approaches for handling continuous predictors on the performance of a prognostic model</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2016-10-15</date><risdate>2016</risdate><volume>35</volume><issue>23</issue><spage>4124</spage><epage>4135</epage><pages>4124-4135</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><coden>SMEDDA</coden><abstract>Continuous predictors are routinely encountered when developing a prognostic model. Investigators, who are often non‐statisticians, must decide how to handle continuous predictors in their models. Categorising continuous measurements into two or more categories has been widely discredited, yet is still frequently done because of its simplicity, investigator ignorance of the potential impact and of suitable alternatives, or to facilitate model uptake. We examine three broad approaches for handling continuous predictors on the performance of a prognostic model, including various methods of categorising predictors, modelling a linear relationship between the predictor and outcome and modelling a nonlinear relationship using fractional polynomials or restricted cubic splines. We compare the performance (measured by the c‐index, calibration and net benefit) of prognostic models built using each approach, evaluating them using separate data from that used to build them. We show that categorising continuous predictors produces models with poor predictive performance and poor clinical usefulness. Categorising continuous predictors is unnecessary, biologically implausible and inefficient and should not be used in prognostic model development. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>27193918</pmid><doi>10.1002/sim.6986</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2772-2316</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2016-10, Vol.35 (23), p.4124-4135 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5026162 |
source | MEDLINE; Wiley Journals |
subjects | Algorithms Calibration Comparative analysis continuous predictors dichotomisation Humans Impact analysis Medical statistics Models, Statistical Polynomials Prognosis prognostic modelling |
title | Quantifying the impact of different approaches for handling continuous predictors on the performance of a prognostic model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A58%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20the%20impact%20of%20different%20approaches%20for%20handling%20continuous%20predictors%20on%20the%20performance%20of%20a%20prognostic%20model&rft.jtitle=Statistics%20in%20medicine&rft.au=Collins,%20Gary%20S.&rft.date=2016-10-15&rft.volume=35&rft.issue=23&rft.spage=4124&rft.epage=4135&rft.pages=4124-4135&rft.issn=0277-6715&rft.eissn=1097-0258&rft.coden=SMEDDA&rft_id=info:doi/10.1002/sim.6986&rft_dat=%3Cproquest_pubme%3E4189911311%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1822062234&rft_id=info:pmid/27193918&rfr_iscdi=true |