Quantifying the impact of different approaches for handling continuous predictors on the performance of a prognostic model

Continuous predictors are routinely encountered when developing a prognostic model. Investigators, who are often non‐statisticians, must decide how to handle continuous predictors in their models. Categorising continuous measurements into two or more categories has been widely discredited, yet is st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2016-10, Vol.35 (23), p.4124-4135
Hauptverfasser: Collins, Gary S., Ogundimu, Emmanuel O., Cook, Jonathan A., Manach, Yannick Le, Altman, Douglas G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4135
container_issue 23
container_start_page 4124
container_title Statistics in medicine
container_volume 35
creator Collins, Gary S.
Ogundimu, Emmanuel O.
Cook, Jonathan A.
Manach, Yannick Le
Altman, Douglas G.
description Continuous predictors are routinely encountered when developing a prognostic model. Investigators, who are often non‐statisticians, must decide how to handle continuous predictors in their models. Categorising continuous measurements into two or more categories has been widely discredited, yet is still frequently done because of its simplicity, investigator ignorance of the potential impact and of suitable alternatives, or to facilitate model uptake. We examine three broad approaches for handling continuous predictors on the performance of a prognostic model, including various methods of categorising predictors, modelling a linear relationship between the predictor and outcome and modelling a nonlinear relationship using fractional polynomials or restricted cubic splines. We compare the performance (measured by the c‐index, calibration and net benefit) of prognostic models built using each approach, evaluating them using separate data from that used to build them. We show that categorising continuous predictors produces models with poor predictive performance and poor clinical usefulness. Categorising continuous predictors is unnecessary, biologically implausible and inefficient and should not be used in prognostic model development. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
doi_str_mv 10.1002/sim.6986
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5026162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4189911311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4766-8fcd835a8b530fd1a27fe2846a0773ddf6a841b7b40a666f489af34538b014513</originalsourceid><addsrcrecordid>eNp1kUtv1DAURi0EokNB4hcgS2zYpPgRP7JBQiMoVQcQaoGl5Tj2jEtip3YCDL8eTzsMD4nVXfj43PvpA-AxRicYIfI8--GEN5LfAQuMGlEhwuRdsEBEiIoLzI7Ag5yvEMKYEXEfHBGBG9pguQA_Psw6TN5tfVjDaWOhH0ZtJhgd7LxzNtkwQT2OKWqzsRm6mOBGh67f8SaWr2GOc4Zjsp03U0wZxnAjGm0q8KCDsTubLkhch5gnb-AQO9s_BPec7rN9tJ_H4OPrV5fLN9Xq_enZ8uWqMrXgvJLOdJIyLVtGkeuwJsJZImuukRC06xzXssataGukOeeulo12tGZUtgjXDNNj8OLWO87tYDtTEiXdqzH5Qaetitqrv1-C36h1_KoYIhxzUgTP9oIUr2ebJzX4bGzf62BLdoUlFqgsalBBn_6DXsU5hRKvUIQgTgitfwtNijkn6w7HYKR2hapSqNoVWtAnfx5_AH81WIDqFvjme7v9r0hdnL3dC_e8z5P9fuB1-qK4oIKpz-9O1adzSfHycqUu6E9lMbuq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1822062234</pqid></control><display><type>article</type><title>Quantifying the impact of different approaches for handling continuous predictors on the performance of a prognostic model</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Collins, Gary S. ; Ogundimu, Emmanuel O. ; Cook, Jonathan A. ; Manach, Yannick Le ; Altman, Douglas G.</creator><creatorcontrib>Collins, Gary S. ; Ogundimu, Emmanuel O. ; Cook, Jonathan A. ; Manach, Yannick Le ; Altman, Douglas G.</creatorcontrib><description>Continuous predictors are routinely encountered when developing a prognostic model. Investigators, who are often non‐statisticians, must decide how to handle continuous predictors in their models. Categorising continuous measurements into two or more categories has been widely discredited, yet is still frequently done because of its simplicity, investigator ignorance of the potential impact and of suitable alternatives, or to facilitate model uptake. We examine three broad approaches for handling continuous predictors on the performance of a prognostic model, including various methods of categorising predictors, modelling a linear relationship between the predictor and outcome and modelling a nonlinear relationship using fractional polynomials or restricted cubic splines. We compare the performance (measured by the c‐index, calibration and net benefit) of prognostic models built using each approach, evaluating them using separate data from that used to build them. We show that categorising continuous predictors produces models with poor predictive performance and poor clinical usefulness. Categorising continuous predictors is unnecessary, biologically implausible and inefficient and should not be used in prognostic model development. © 2016 The Authors. Statistics in Medicine published by John Wiley &amp; Sons Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.6986</identifier><identifier>PMID: 27193918</identifier><identifier>CODEN: SMEDDA</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Calibration ; Comparative analysis ; continuous predictors ; dichotomisation ; Humans ; Impact analysis ; Medical statistics ; Models, Statistical ; Polynomials ; Prognosis ; prognostic modelling</subject><ispartof>Statistics in medicine, 2016-10, Vol.35 (23), p.4124-4135</ispartof><rights>2016 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2016 The Authors. Statistics in Medicine published by John Wiley &amp; Sons Ltd.</rights><rights>Copyright Wiley Subscription Services, Inc. Oct 15, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4766-8fcd835a8b530fd1a27fe2846a0773ddf6a841b7b40a666f489af34538b014513</citedby><cites>FETCH-LOGICAL-c4766-8fcd835a8b530fd1a27fe2846a0773ddf6a841b7b40a666f489af34538b014513</cites><orcidid>0000-0002-2772-2316</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.6986$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.6986$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27193918$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Collins, Gary S.</creatorcontrib><creatorcontrib>Ogundimu, Emmanuel O.</creatorcontrib><creatorcontrib>Cook, Jonathan A.</creatorcontrib><creatorcontrib>Manach, Yannick Le</creatorcontrib><creatorcontrib>Altman, Douglas G.</creatorcontrib><title>Quantifying the impact of different approaches for handling continuous predictors on the performance of a prognostic model</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>Continuous predictors are routinely encountered when developing a prognostic model. Investigators, who are often non‐statisticians, must decide how to handle continuous predictors in their models. Categorising continuous measurements into two or more categories has been widely discredited, yet is still frequently done because of its simplicity, investigator ignorance of the potential impact and of suitable alternatives, or to facilitate model uptake. We examine three broad approaches for handling continuous predictors on the performance of a prognostic model, including various methods of categorising predictors, modelling a linear relationship between the predictor and outcome and modelling a nonlinear relationship using fractional polynomials or restricted cubic splines. We compare the performance (measured by the c‐index, calibration and net benefit) of prognostic models built using each approach, evaluating them using separate data from that used to build them. We show that categorising continuous predictors produces models with poor predictive performance and poor clinical usefulness. Categorising continuous predictors is unnecessary, biologically implausible and inefficient and should not be used in prognostic model development. © 2016 The Authors. Statistics in Medicine published by John Wiley &amp; Sons Ltd.</description><subject>Algorithms</subject><subject>Calibration</subject><subject>Comparative analysis</subject><subject>continuous predictors</subject><subject>dichotomisation</subject><subject>Humans</subject><subject>Impact analysis</subject><subject>Medical statistics</subject><subject>Models, Statistical</subject><subject>Polynomials</subject><subject>Prognosis</subject><subject>prognostic modelling</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kUtv1DAURi0EokNB4hcgS2zYpPgRP7JBQiMoVQcQaoGl5Tj2jEtip3YCDL8eTzsMD4nVXfj43PvpA-AxRicYIfI8--GEN5LfAQuMGlEhwuRdsEBEiIoLzI7Ag5yvEMKYEXEfHBGBG9pguQA_Psw6TN5tfVjDaWOhH0ZtJhgd7LxzNtkwQT2OKWqzsRm6mOBGh67f8SaWr2GOc4Zjsp03U0wZxnAjGm0q8KCDsTubLkhch5gnb-AQO9s_BPec7rN9tJ_H4OPrV5fLN9Xq_enZ8uWqMrXgvJLOdJIyLVtGkeuwJsJZImuukRC06xzXssataGukOeeulo12tGZUtgjXDNNj8OLWO87tYDtTEiXdqzH5Qaetitqrv1-C36h1_KoYIhxzUgTP9oIUr2ebJzX4bGzf62BLdoUlFqgsalBBn_6DXsU5hRKvUIQgTgitfwtNijkn6w7HYKR2hapSqNoVWtAnfx5_AH81WIDqFvjme7v9r0hdnL3dC_e8z5P9fuB1-qK4oIKpz-9O1adzSfHycqUu6E9lMbuq</recordid><startdate>20161015</startdate><enddate>20161015</enddate><creator>Collins, Gary S.</creator><creator>Ogundimu, Emmanuel O.</creator><creator>Cook, Jonathan A.</creator><creator>Manach, Yannick Le</creator><creator>Altman, Douglas G.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2772-2316</orcidid></search><sort><creationdate>20161015</creationdate><title>Quantifying the impact of different approaches for handling continuous predictors on the performance of a prognostic model</title><author>Collins, Gary S. ; Ogundimu, Emmanuel O. ; Cook, Jonathan A. ; Manach, Yannick Le ; Altman, Douglas G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4766-8fcd835a8b530fd1a27fe2846a0773ddf6a841b7b40a666f489af34538b014513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Calibration</topic><topic>Comparative analysis</topic><topic>continuous predictors</topic><topic>dichotomisation</topic><topic>Humans</topic><topic>Impact analysis</topic><topic>Medical statistics</topic><topic>Models, Statistical</topic><topic>Polynomials</topic><topic>Prognosis</topic><topic>prognostic modelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Collins, Gary S.</creatorcontrib><creatorcontrib>Ogundimu, Emmanuel O.</creatorcontrib><creatorcontrib>Cook, Jonathan A.</creatorcontrib><creatorcontrib>Manach, Yannick Le</creatorcontrib><creatorcontrib>Altman, Douglas G.</creatorcontrib><collection>Istex</collection><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Collins, Gary S.</au><au>Ogundimu, Emmanuel O.</au><au>Cook, Jonathan A.</au><au>Manach, Yannick Le</au><au>Altman, Douglas G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying the impact of different approaches for handling continuous predictors on the performance of a prognostic model</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2016-10-15</date><risdate>2016</risdate><volume>35</volume><issue>23</issue><spage>4124</spage><epage>4135</epage><pages>4124-4135</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><coden>SMEDDA</coden><abstract>Continuous predictors are routinely encountered when developing a prognostic model. Investigators, who are often non‐statisticians, must decide how to handle continuous predictors in their models. Categorising continuous measurements into two or more categories has been widely discredited, yet is still frequently done because of its simplicity, investigator ignorance of the potential impact and of suitable alternatives, or to facilitate model uptake. We examine three broad approaches for handling continuous predictors on the performance of a prognostic model, including various methods of categorising predictors, modelling a linear relationship between the predictor and outcome and modelling a nonlinear relationship using fractional polynomials or restricted cubic splines. We compare the performance (measured by the c‐index, calibration and net benefit) of prognostic models built using each approach, evaluating them using separate data from that used to build them. We show that categorising continuous predictors produces models with poor predictive performance and poor clinical usefulness. Categorising continuous predictors is unnecessary, biologically implausible and inefficient and should not be used in prognostic model development. © 2016 The Authors. Statistics in Medicine published by John Wiley &amp; Sons Ltd.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>27193918</pmid><doi>10.1002/sim.6986</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2772-2316</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2016-10, Vol.35 (23), p.4124-4135
issn 0277-6715
1097-0258
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5026162
source MEDLINE; Wiley Journals
subjects Algorithms
Calibration
Comparative analysis
continuous predictors
dichotomisation
Humans
Impact analysis
Medical statistics
Models, Statistical
Polynomials
Prognosis
prognostic modelling
title Quantifying the impact of different approaches for handling continuous predictors on the performance of a prognostic model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A58%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20the%20impact%20of%20different%20approaches%20for%20handling%20continuous%20predictors%20on%20the%20performance%20of%20a%20prognostic%20model&rft.jtitle=Statistics%20in%20medicine&rft.au=Collins,%20Gary%20S.&rft.date=2016-10-15&rft.volume=35&rft.issue=23&rft.spage=4124&rft.epage=4135&rft.pages=4124-4135&rft.issn=0277-6715&rft.eissn=1097-0258&rft.coden=SMEDDA&rft_id=info:doi/10.1002/sim.6986&rft_dat=%3Cproquest_pubme%3E4189911311%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1822062234&rft_id=info:pmid/27193918&rfr_iscdi=true