Epsin N-terminal Homology Domain (ENTH) Activity as a Function of Membrane Tension

The epsin N-terminal homology domain (ENTH) is a major player in clathrin-mediated endocytosis. To investigate the influence of initial membrane tension on ENTH binding and activity, we established a bilayer system based on adhered giant unilamellar vesicles (GUVs) to be able to control and adjust t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2016-09, Vol.291 (38), p.19953-19961
Hauptverfasser: Gleisner, Martin, Kroppen, Benjamin, Fricke, Christian, Teske, Nelli, Kliesch, Torben-Tobias, Janshoff, Andreas, Meinecke, Michael, Steinem, Claudia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19961
container_issue 38
container_start_page 19953
container_title The Journal of biological chemistry
container_volume 291
creator Gleisner, Martin
Kroppen, Benjamin
Fricke, Christian
Teske, Nelli
Kliesch, Torben-Tobias
Janshoff, Andreas
Meinecke, Michael
Steinem, Claudia
description The epsin N-terminal homology domain (ENTH) is a major player in clathrin-mediated endocytosis. To investigate the influence of initial membrane tension on ENTH binding and activity, we established a bilayer system based on adhered giant unilamellar vesicles (GUVs) to be able to control and adjust the membrane tension σ covering a broad regime. The shape of each individual adhered GUV as well as its adhesion area was monitored by spinning disc confocal laser microscopy. Control of σ in a range of 0.08-1.02 mN/m was achieved by altering the Mg2+ concentration in solution, which changes the surface adhesion energy per unit area of the GUVs. Specific binding of ENTH to phosphatidylinositol 4,5-bisphosphate leads to a substantial increase in adhesion area of the sessile GUV. At low tension (
doi_str_mv 10.1074/jbc.M116.731612
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5025682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820359731</els_id><sourcerecordid>1820602772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-b46a0e1df72d158aec9bdcb7f061b67e20795b96ade16343b9a214b6b66ee9923</originalsourceid><addsrcrecordid>eNp1kUFPJCEQhcnGzTqre96b4aiHHoHuhuZiYnTcMVE3MWPijQBd7WK6YYSeSebfy2TUrAfrQqrq4xXUQ-g3JVNKRHX6bOz0llI-FSXllH1DE0qasihr-riHJoQwWkhWN_voZ0rPJEcl6Q-0z0TFecmrCbqfLZPz-K4YIQ7O6x7PwxD68LTBl2HQuXU8u1vMT_C5Hd3ajRusE9b4auVzHjwOHb6FwUTtAS_Ap1w7RN873Sf49XYeoIer2eJiXtz8_XN9cX5T2JrIsTAV1wRo2wnW0rrRYKVprREd4dRwAYwIWRvJdQuUl1VppGa0MtxwDiAlKw_Q2U53uTIDtBb8GHWvltENOm5U0E597nj3Tz2FtaoJq3mzFTh-E4jhZQVpVINLFvo-fyaskqINI5wwIbbo6Q61MaQUofsYQ4naOqGyE2rrhNo5kW8c_f-6D_599RmQOwDyjtYOokrWgbfQugh2VG1wX4q_AhOxl_g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1820602772</pqid></control><display><type>article</type><title>Epsin N-terminal Homology Domain (ENTH) Activity as a Function of Membrane Tension</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Gleisner, Martin ; Kroppen, Benjamin ; Fricke, Christian ; Teske, Nelli ; Kliesch, Torben-Tobias ; Janshoff, Andreas ; Meinecke, Michael ; Steinem, Claudia</creator><creatorcontrib>Gleisner, Martin ; Kroppen, Benjamin ; Fricke, Christian ; Teske, Nelli ; Kliesch, Torben-Tobias ; Janshoff, Andreas ; Meinecke, Michael ; Steinem, Claudia</creatorcontrib><description>The epsin N-terminal homology domain (ENTH) is a major player in clathrin-mediated endocytosis. To investigate the influence of initial membrane tension on ENTH binding and activity, we established a bilayer system based on adhered giant unilamellar vesicles (GUVs) to be able to control and adjust the membrane tension σ covering a broad regime. The shape of each individual adhered GUV as well as its adhesion area was monitored by spinning disc confocal laser microscopy. Control of σ in a range of 0.08-1.02 mN/m was achieved by altering the Mg2+ concentration in solution, which changes the surface adhesion energy per unit area of the GUVs. Specific binding of ENTH to phosphatidylinositol 4,5-bisphosphate leads to a substantial increase in adhesion area of the sessile GUV. At low tension (&lt;0.1 mN/m) binding of ENTH can induce tubular structures, whereas at higher membrane tension the ENTH interaction deflates the sessile GUV and thereby increases the adhesion area. The increase in adhesion area is mainly attributed to a decrease in the area compressibility modulus KA. We propose that the insertion of the ENTH helix-0 into the membrane is largely responsible for the observed decrease in KA, which is supported by the observation that the mutant ENTH L6E shows a reduced increase in adhesion area. These results demonstrate that even in the absence of tubule formation, the area compressibility modulus and, as such, the bending rigidity of the membrane is considerably reduced upon ENTH binding. This renders membrane bending and tubule formation energetically less costly.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M116.731612</identifier><identifier>PMID: 27466364</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adaptor Proteins, Vesicular Transport - chemistry ; endocytosis ; fluorescence ; Humans ; lipid vesicle ; lipid-protein interaction ; Membrane Biology ; membrane protein ; Protein Domains ; Protein Structure, Secondary ; Surface Tension ; Unilamellar Liposomes - chemistry</subject><ispartof>The Journal of biological chemistry, 2016-09, Vol.291 (38), p.19953-19961</ispartof><rights>2016 © 2016 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2016 by The American Society for Biochemistry and Molecular Biology, Inc. 2016 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-b46a0e1df72d158aec9bdcb7f061b67e20795b96ade16343b9a214b6b66ee9923</citedby><cites>FETCH-LOGICAL-c509t-b46a0e1df72d158aec9bdcb7f061b67e20795b96ade16343b9a214b6b66ee9923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5025682/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5025682/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27466364$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gleisner, Martin</creatorcontrib><creatorcontrib>Kroppen, Benjamin</creatorcontrib><creatorcontrib>Fricke, Christian</creatorcontrib><creatorcontrib>Teske, Nelli</creatorcontrib><creatorcontrib>Kliesch, Torben-Tobias</creatorcontrib><creatorcontrib>Janshoff, Andreas</creatorcontrib><creatorcontrib>Meinecke, Michael</creatorcontrib><creatorcontrib>Steinem, Claudia</creatorcontrib><title>Epsin N-terminal Homology Domain (ENTH) Activity as a Function of Membrane Tension</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The epsin N-terminal homology domain (ENTH) is a major player in clathrin-mediated endocytosis. To investigate the influence of initial membrane tension on ENTH binding and activity, we established a bilayer system based on adhered giant unilamellar vesicles (GUVs) to be able to control and adjust the membrane tension σ covering a broad regime. The shape of each individual adhered GUV as well as its adhesion area was monitored by spinning disc confocal laser microscopy. Control of σ in a range of 0.08-1.02 mN/m was achieved by altering the Mg2+ concentration in solution, which changes the surface adhesion energy per unit area of the GUVs. Specific binding of ENTH to phosphatidylinositol 4,5-bisphosphate leads to a substantial increase in adhesion area of the sessile GUV. At low tension (&lt;0.1 mN/m) binding of ENTH can induce tubular structures, whereas at higher membrane tension the ENTH interaction deflates the sessile GUV and thereby increases the adhesion area. The increase in adhesion area is mainly attributed to a decrease in the area compressibility modulus KA. We propose that the insertion of the ENTH helix-0 into the membrane is largely responsible for the observed decrease in KA, which is supported by the observation that the mutant ENTH L6E shows a reduced increase in adhesion area. These results demonstrate that even in the absence of tubule formation, the area compressibility modulus and, as such, the bending rigidity of the membrane is considerably reduced upon ENTH binding. This renders membrane bending and tubule formation energetically less costly.</description><subject>Adaptor Proteins, Vesicular Transport - chemistry</subject><subject>endocytosis</subject><subject>fluorescence</subject><subject>Humans</subject><subject>lipid vesicle</subject><subject>lipid-protein interaction</subject><subject>Membrane Biology</subject><subject>membrane protein</subject><subject>Protein Domains</subject><subject>Protein Structure, Secondary</subject><subject>Surface Tension</subject><subject>Unilamellar Liposomes - chemistry</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUFPJCEQhcnGzTqre96b4aiHHoHuhuZiYnTcMVE3MWPijQBd7WK6YYSeSebfy2TUrAfrQqrq4xXUQ-g3JVNKRHX6bOz0llI-FSXllH1DE0qasihr-riHJoQwWkhWN_voZ0rPJEcl6Q-0z0TFecmrCbqfLZPz-K4YIQ7O6x7PwxD68LTBl2HQuXU8u1vMT_C5Hd3ajRusE9b4auVzHjwOHb6FwUTtAS_Ap1w7RN873Sf49XYeoIer2eJiXtz8_XN9cX5T2JrIsTAV1wRo2wnW0rrRYKVprREd4dRwAYwIWRvJdQuUl1VppGa0MtxwDiAlKw_Q2U53uTIDtBb8GHWvltENOm5U0E597nj3Tz2FtaoJq3mzFTh-E4jhZQVpVINLFvo-fyaskqINI5wwIbbo6Q61MaQUofsYQ4naOqGyE2rrhNo5kW8c_f-6D_599RmQOwDyjtYOokrWgbfQugh2VG1wX4q_AhOxl_g</recordid><startdate>20160916</startdate><enddate>20160916</enddate><creator>Gleisner, Martin</creator><creator>Kroppen, Benjamin</creator><creator>Fricke, Christian</creator><creator>Teske, Nelli</creator><creator>Kliesch, Torben-Tobias</creator><creator>Janshoff, Andreas</creator><creator>Meinecke, Michael</creator><creator>Steinem, Claudia</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160916</creationdate><title>Epsin N-terminal Homology Domain (ENTH) Activity as a Function of Membrane Tension</title><author>Gleisner, Martin ; Kroppen, Benjamin ; Fricke, Christian ; Teske, Nelli ; Kliesch, Torben-Tobias ; Janshoff, Andreas ; Meinecke, Michael ; Steinem, Claudia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-b46a0e1df72d158aec9bdcb7f061b67e20795b96ade16343b9a214b6b66ee9923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptor Proteins, Vesicular Transport - chemistry</topic><topic>endocytosis</topic><topic>fluorescence</topic><topic>Humans</topic><topic>lipid vesicle</topic><topic>lipid-protein interaction</topic><topic>Membrane Biology</topic><topic>membrane protein</topic><topic>Protein Domains</topic><topic>Protein Structure, Secondary</topic><topic>Surface Tension</topic><topic>Unilamellar Liposomes - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gleisner, Martin</creatorcontrib><creatorcontrib>Kroppen, Benjamin</creatorcontrib><creatorcontrib>Fricke, Christian</creatorcontrib><creatorcontrib>Teske, Nelli</creatorcontrib><creatorcontrib>Kliesch, Torben-Tobias</creatorcontrib><creatorcontrib>Janshoff, Andreas</creatorcontrib><creatorcontrib>Meinecke, Michael</creatorcontrib><creatorcontrib>Steinem, Claudia</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gleisner, Martin</au><au>Kroppen, Benjamin</au><au>Fricke, Christian</au><au>Teske, Nelli</au><au>Kliesch, Torben-Tobias</au><au>Janshoff, Andreas</au><au>Meinecke, Michael</au><au>Steinem, Claudia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epsin N-terminal Homology Domain (ENTH) Activity as a Function of Membrane Tension</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2016-09-16</date><risdate>2016</risdate><volume>291</volume><issue>38</issue><spage>19953</spage><epage>19961</epage><pages>19953-19961</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The epsin N-terminal homology domain (ENTH) is a major player in clathrin-mediated endocytosis. To investigate the influence of initial membrane tension on ENTH binding and activity, we established a bilayer system based on adhered giant unilamellar vesicles (GUVs) to be able to control and adjust the membrane tension σ covering a broad regime. The shape of each individual adhered GUV as well as its adhesion area was monitored by spinning disc confocal laser microscopy. Control of σ in a range of 0.08-1.02 mN/m was achieved by altering the Mg2+ concentration in solution, which changes the surface adhesion energy per unit area of the GUVs. Specific binding of ENTH to phosphatidylinositol 4,5-bisphosphate leads to a substantial increase in adhesion area of the sessile GUV. At low tension (&lt;0.1 mN/m) binding of ENTH can induce tubular structures, whereas at higher membrane tension the ENTH interaction deflates the sessile GUV and thereby increases the adhesion area. The increase in adhesion area is mainly attributed to a decrease in the area compressibility modulus KA. We propose that the insertion of the ENTH helix-0 into the membrane is largely responsible for the observed decrease in KA, which is supported by the observation that the mutant ENTH L6E shows a reduced increase in adhesion area. These results demonstrate that even in the absence of tubule formation, the area compressibility modulus and, as such, the bending rigidity of the membrane is considerably reduced upon ENTH binding. This renders membrane bending and tubule formation energetically less costly.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27466364</pmid><doi>10.1074/jbc.M116.731612</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2016-09, Vol.291 (38), p.19953-19961
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5025682
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Adaptor Proteins, Vesicular Transport - chemistry
endocytosis
fluorescence
Humans
lipid vesicle
lipid-protein interaction
Membrane Biology
membrane protein
Protein Domains
Protein Structure, Secondary
Surface Tension
Unilamellar Liposomes - chemistry
title Epsin N-terminal Homology Domain (ENTH) Activity as a Function of Membrane Tension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A42%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epsin%20N-terminal%20Homology%20Domain%20(ENTH)%20Activity%20as%20a%20Function%20of%20Membrane%20Tension&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Gleisner,%20Martin&rft.date=2016-09-16&rft.volume=291&rft.issue=38&rft.spage=19953&rft.epage=19961&rft.pages=19953-19961&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M116.731612&rft_dat=%3Cproquest_pubme%3E1820602772%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1820602772&rft_id=info:pmid/27466364&rft_els_id=S0021925820359731&rfr_iscdi=true