Design of a cone-and-plate device for controlled realistic shear stress stimulation on endothelial cell monolayers
Endothelial cells are constantly exposed to blood flow and the resulting frictional force, the wall shear stress, varies in magnitude and direction with time, depending on vasculature geometry. Previous studies have shown that the structure and function of endothelial cells, and ultimately of the ve...
Gespeichert in:
Veröffentlicht in: | Cytotechnology (Dordrecht) 2016-10, Vol.68 (5), p.1885-1896 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1896 |
---|---|
container_issue | 5 |
container_start_page | 1885 |
container_title | Cytotechnology (Dordrecht) |
container_volume | 68 |
creator | Franzoni, Marco Cattaneo, Irene Ene-Iordache, Bogdan Oldani, Alberto Righettini, Paolo Remuzzi, Andrea |
description | Endothelial cells are constantly exposed to blood flow and the resulting frictional force, the wall shear stress, varies in magnitude and direction with time, depending on vasculature geometry. Previous studies have shown that the structure and function of endothelial cells, and ultimately of the vessel wall, are deeply affected by the nature of wall shear stress waveforms. To investigate the in vitro effects of these stimuli, we developed a compact, programmable, real-time operated system based on cone-and-plate geometry, that can be used within a standard cell incubator. To verify the capability to replicate realistic shear stress waveforms, we calculated both analytically and numerically to what extent the system is able to correctly deliver the stimuli defined by the user at plate level. Our results indicate that for radii greater than 25 mm, the shear stress is almost uniform and directly proportional to cone rotation velocity. We further established that using a threshold of 10 Hz of wall shear stress waveform frequency components, oscillating flow conditions can be reproduced on cell monolayer surface. Finally, we verified the capability of the system to perform long-term flow exposure experiments ensuring sterility and cell culture viability on human umbilical vein endothelial cells exposed to unidirectional and oscillating shear stress. In conclusion, the system we developed is a highly dynamic, easy to handle, and able to generate pulsatile and unsteady oscillating wall shear stress waveforms. This system can be used to investigate the effects of realistic stimulations on endothelial cells, similar to those exerted in vivo by blood flow. |
doi_str_mv | 10.1007/s10616-015-9941-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5023562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918253158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c601t-afc0352df8831f9d5094200a5acf6fbf32cdbd4ce1db02b49e9bb2131aab0d4a3</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxSMEokvhA3BBlrhwMYztOIkvSKjln1SJC5wtx57sunLsxU4q9dvjaEtVkOA0h_eb53l-TfOSwVsG0L8rDDrWUWCSKtUyyh81OyZ7QaHvh8fNDhQHqqBTZ82zUq4BQPVMPG3OeNfLdmjFrsmXWPw-kjQRQ2yKSE109BjMgsThjbdIppQ3ZckpBHQkowm-LN6SckCTSVkyllKHn9e65lM1iwSjS8sBgzeBWAyBzCmmYG4xl-fNk8mEgi_u5nnz49PH7xdf6NW3z18vPlxR2wFbqJksCMndNAyCTcpJUC0HMNLYqZvGSXDrRtdaZG4EPrYK1ThyJpgxI7jWiPPm_cn3uI4zOos1ggn6mP1s8q1Oxus_legPep9utAQuZMerwZs7g5x-rlgWPfuyhTER01o0Gzh09VNlV9HXf6HXac2xxtNcVU4KJof_UWwYYOg5sM2LnSibUykZp_uTGeitd33qXdfe9da73k599TDr_cbvoivAT0CpUtxjfvD0P11_AcvRuuI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918253158</pqid></control><display><type>article</type><title>Design of a cone-and-plate device for controlled realistic shear stress stimulation on endothelial cell monolayers</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>PubMed Central</source><source>ProQuest Central</source><creator>Franzoni, Marco ; Cattaneo, Irene ; Ene-Iordache, Bogdan ; Oldani, Alberto ; Righettini, Paolo ; Remuzzi, Andrea</creator><creatorcontrib>Franzoni, Marco ; Cattaneo, Irene ; Ene-Iordache, Bogdan ; Oldani, Alberto ; Righettini, Paolo ; Remuzzi, Andrea</creatorcontrib><description>Endothelial cells are constantly exposed to blood flow and the resulting frictional force, the wall shear stress, varies in magnitude and direction with time, depending on vasculature geometry. Previous studies have shown that the structure and function of endothelial cells, and ultimately of the vessel wall, are deeply affected by the nature of wall shear stress waveforms. To investigate the in vitro effects of these stimuli, we developed a compact, programmable, real-time operated system based on cone-and-plate geometry, that can be used within a standard cell incubator. To verify the capability to replicate realistic shear stress waveforms, we calculated both analytically and numerically to what extent the system is able to correctly deliver the stimuli defined by the user at plate level. Our results indicate that for radii greater than 25 mm, the shear stress is almost uniform and directly proportional to cone rotation velocity. We further established that using a threshold of 10 Hz of wall shear stress waveform frequency components, oscillating flow conditions can be reproduced on cell monolayer surface. Finally, we verified the capability of the system to perform long-term flow exposure experiments ensuring sterility and cell culture viability on human umbilical vein endothelial cells exposed to unidirectional and oscillating shear stress. In conclusion, the system we developed is a highly dynamic, easy to handle, and able to generate pulsatile and unsteady oscillating wall shear stress waveforms. This system can be used to investigate the effects of realistic stimulations on endothelial cells, similar to those exerted in vivo by blood flow.</description><identifier>ISSN: 0920-9069</identifier><identifier>EISSN: 1573-0778</identifier><identifier>DOI: 10.1007/s10616-015-9941-2</identifier><identifier>PMID: 26754843</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biochemistry ; Biomedicine ; Biotechnology ; Blood flow ; Cell culture ; Chemistry ; Chemistry and Materials Science ; Endothelial cells ; Linux ; Mechanical stimuli ; Original ; Original Article ; Reynolds number ; Shear stress ; Sterility ; Structure-function relationships ; Umbilical vein ; User interface ; Velocity ; Viscosity</subject><ispartof>Cytotechnology (Dordrecht), 2016-10, Vol.68 (5), p.1885-1896</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><rights>Springer Science+Business Media Dordrecht 2016.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c601t-afc0352df8831f9d5094200a5acf6fbf32cdbd4ce1db02b49e9bb2131aab0d4a3</citedby><cites>FETCH-LOGICAL-c601t-afc0352df8831f9d5094200a5acf6fbf32cdbd4ce1db02b49e9bb2131aab0d4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5023562/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918253158?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,725,778,782,883,21371,27907,27908,33727,33728,41471,42540,43788,51302,53774,53776,64366,64368,64370,72220</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26754843$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Franzoni, Marco</creatorcontrib><creatorcontrib>Cattaneo, Irene</creatorcontrib><creatorcontrib>Ene-Iordache, Bogdan</creatorcontrib><creatorcontrib>Oldani, Alberto</creatorcontrib><creatorcontrib>Righettini, Paolo</creatorcontrib><creatorcontrib>Remuzzi, Andrea</creatorcontrib><title>Design of a cone-and-plate device for controlled realistic shear stress stimulation on endothelial cell monolayers</title><title>Cytotechnology (Dordrecht)</title><addtitle>Cytotechnology</addtitle><addtitle>Cytotechnology</addtitle><description>Endothelial cells are constantly exposed to blood flow and the resulting frictional force, the wall shear stress, varies in magnitude and direction with time, depending on vasculature geometry. Previous studies have shown that the structure and function of endothelial cells, and ultimately of the vessel wall, are deeply affected by the nature of wall shear stress waveforms. To investigate the in vitro effects of these stimuli, we developed a compact, programmable, real-time operated system based on cone-and-plate geometry, that can be used within a standard cell incubator. To verify the capability to replicate realistic shear stress waveforms, we calculated both analytically and numerically to what extent the system is able to correctly deliver the stimuli defined by the user at plate level. Our results indicate that for radii greater than 25 mm, the shear stress is almost uniform and directly proportional to cone rotation velocity. We further established that using a threshold of 10 Hz of wall shear stress waveform frequency components, oscillating flow conditions can be reproduced on cell monolayer surface. Finally, we verified the capability of the system to perform long-term flow exposure experiments ensuring sterility and cell culture viability on human umbilical vein endothelial cells exposed to unidirectional and oscillating shear stress. In conclusion, the system we developed is a highly dynamic, easy to handle, and able to generate pulsatile and unsteady oscillating wall shear stress waveforms. This system can be used to investigate the effects of realistic stimulations on endothelial cells, similar to those exerted in vivo by blood flow.</description><subject>Biochemistry</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Blood flow</subject><subject>Cell culture</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Endothelial cells</subject><subject>Linux</subject><subject>Mechanical stimuli</subject><subject>Original</subject><subject>Original Article</subject><subject>Reynolds number</subject><subject>Shear stress</subject><subject>Sterility</subject><subject>Structure-function relationships</subject><subject>Umbilical vein</subject><subject>User interface</subject><subject>Velocity</subject><subject>Viscosity</subject><issn>0920-9069</issn><issn>1573-0778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9v1DAQxSMEokvhA3BBlrhwMYztOIkvSKjln1SJC5wtx57sunLsxU4q9dvjaEtVkOA0h_eb53l-TfOSwVsG0L8rDDrWUWCSKtUyyh81OyZ7QaHvh8fNDhQHqqBTZ82zUq4BQPVMPG3OeNfLdmjFrsmXWPw-kjQRQ2yKSE109BjMgsThjbdIppQ3ZckpBHQkowm-LN6SckCTSVkyllKHn9e65lM1iwSjS8sBgzeBWAyBzCmmYG4xl-fNk8mEgi_u5nnz49PH7xdf6NW3z18vPlxR2wFbqJksCMndNAyCTcpJUC0HMNLYqZvGSXDrRtdaZG4EPrYK1ThyJpgxI7jWiPPm_cn3uI4zOos1ggn6mP1s8q1Oxus_legPep9utAQuZMerwZs7g5x-rlgWPfuyhTER01o0Gzh09VNlV9HXf6HXac2xxtNcVU4KJof_UWwYYOg5sM2LnSibUykZp_uTGeitd33qXdfe9da73k599TDr_cbvoivAT0CpUtxjfvD0P11_AcvRuuI</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Franzoni, Marco</creator><creator>Cattaneo, Irene</creator><creator>Ene-Iordache, Bogdan</creator><creator>Oldani, Alberto</creator><creator>Righettini, Paolo</creator><creator>Remuzzi, Andrea</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161001</creationdate><title>Design of a cone-and-plate device for controlled realistic shear stress stimulation on endothelial cell monolayers</title><author>Franzoni, Marco ; Cattaneo, Irene ; Ene-Iordache, Bogdan ; Oldani, Alberto ; Righettini, Paolo ; Remuzzi, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c601t-afc0352df8831f9d5094200a5acf6fbf32cdbd4ce1db02b49e9bb2131aab0d4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biochemistry</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Blood flow</topic><topic>Cell culture</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Endothelial cells</topic><topic>Linux</topic><topic>Mechanical stimuli</topic><topic>Original</topic><topic>Original Article</topic><topic>Reynolds number</topic><topic>Shear stress</topic><topic>Sterility</topic><topic>Structure-function relationships</topic><topic>Umbilical vein</topic><topic>User interface</topic><topic>Velocity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franzoni, Marco</creatorcontrib><creatorcontrib>Cattaneo, Irene</creatorcontrib><creatorcontrib>Ene-Iordache, Bogdan</creatorcontrib><creatorcontrib>Oldani, Alberto</creatorcontrib><creatorcontrib>Righettini, Paolo</creatorcontrib><creatorcontrib>Remuzzi, Andrea</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cytotechnology (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franzoni, Marco</au><au>Cattaneo, Irene</au><au>Ene-Iordache, Bogdan</au><au>Oldani, Alberto</au><au>Righettini, Paolo</au><au>Remuzzi, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of a cone-and-plate device for controlled realistic shear stress stimulation on endothelial cell monolayers</atitle><jtitle>Cytotechnology (Dordrecht)</jtitle><stitle>Cytotechnology</stitle><addtitle>Cytotechnology</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>68</volume><issue>5</issue><spage>1885</spage><epage>1896</epage><pages>1885-1896</pages><issn>0920-9069</issn><eissn>1573-0778</eissn><abstract>Endothelial cells are constantly exposed to blood flow and the resulting frictional force, the wall shear stress, varies in magnitude and direction with time, depending on vasculature geometry. Previous studies have shown that the structure and function of endothelial cells, and ultimately of the vessel wall, are deeply affected by the nature of wall shear stress waveforms. To investigate the in vitro effects of these stimuli, we developed a compact, programmable, real-time operated system based on cone-and-plate geometry, that can be used within a standard cell incubator. To verify the capability to replicate realistic shear stress waveforms, we calculated both analytically and numerically to what extent the system is able to correctly deliver the stimuli defined by the user at plate level. Our results indicate that for radii greater than 25 mm, the shear stress is almost uniform and directly proportional to cone rotation velocity. We further established that using a threshold of 10 Hz of wall shear stress waveform frequency components, oscillating flow conditions can be reproduced on cell monolayer surface. Finally, we verified the capability of the system to perform long-term flow exposure experiments ensuring sterility and cell culture viability on human umbilical vein endothelial cells exposed to unidirectional and oscillating shear stress. In conclusion, the system we developed is a highly dynamic, easy to handle, and able to generate pulsatile and unsteady oscillating wall shear stress waveforms. This system can be used to investigate the effects of realistic stimulations on endothelial cells, similar to those exerted in vivo by blood flow.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>26754843</pmid><doi>10.1007/s10616-015-9941-2</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-9069 |
ispartof | Cytotechnology (Dordrecht), 2016-10, Vol.68 (5), p.1885-1896 |
issn | 0920-9069 1573-0778 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5023562 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; PubMed Central; ProQuest Central |
subjects | Biochemistry Biomedicine Biotechnology Blood flow Cell culture Chemistry Chemistry and Materials Science Endothelial cells Linux Mechanical stimuli Original Original Article Reynolds number Shear stress Sterility Structure-function relationships Umbilical vein User interface Velocity Viscosity |
title | Design of a cone-and-plate device for controlled realistic shear stress stimulation on endothelial cell monolayers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A21%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20a%20cone-and-plate%20device%20for%20controlled%20realistic%20shear%20stress%20stimulation%20on%20endothelial%20cell%20monolayers&rft.jtitle=Cytotechnology%20(Dordrecht)&rft.au=Franzoni,%20Marco&rft.date=2016-10-01&rft.volume=68&rft.issue=5&rft.spage=1885&rft.epage=1896&rft.pages=1885-1896&rft.issn=0920-9069&rft.eissn=1573-0778&rft_id=info:doi/10.1007/s10616-015-9941-2&rft_dat=%3Cproquest_pubme%3E2918253158%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918253158&rft_id=info:pmid/26754843&rfr_iscdi=true |