Thiol dependent intramolecular locking of Orai1 channels
Store-operated Ca 2+ entry mediated by STIM1-gated Orai1 channels is essential to activate immune cells and its inhibition or gain-of-function can lead to immune dysfunction and other pathologies. Reactive oxygen species interacting with cysteine residues can alter protein function. Pretreatment of...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2016-09, Vol.6 (1), p.33347-33347, Article 33347 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 33347 |
---|---|
container_issue | 1 |
container_start_page | 33347 |
container_title | Scientific reports |
container_volume | 6 |
creator | Alansary, Dalia Schmidt, Barbara Dörr, Kathrin Bogeski, Ivan Rieger, Heiko Kless, Achim Niemeyer, Barbara A. |
description | Store-operated Ca
2+
entry mediated by STIM1-gated Orai1 channels is essential to activate immune cells and its inhibition or gain-of-function can lead to immune dysfunction and other pathologies. Reactive oxygen species interacting with cysteine residues can alter protein function. Pretreatment of the Ca
2+
selective Orai1 with the oxidant H
2
O
2
reduces I
CRAC
with C195, distant to the pore, being its major redox sensor. However, the mechanism of inhibition remained elusive. Here we combine experimental and theoretical approaches and show that oxidation of Orai1 leads to reduced subunit interaction, slows diffusion and that either oxidized C195 or its oxidomimetic mutation C195D located at the exit of transmembrane helix 3 virtually eliminates channel activation by intramolecular interaction with S239 of transmembrane helix 4, thereby locking the channel in a closed conformation. Our results demonstrate a novel mechanistic model for ROS-mediated inhibition of Orai1 and identify a candidate residue for pharmaceutical intervention. |
doi_str_mv | 10.1038/srep33347 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5022029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1819901650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-ac73463eb32306b49bf49802113f15025c90eea0aca47206ab24c3ad9d59118e3</originalsourceid><addsrcrecordid>eNplkUtLAzEYRYMottQu_AMy4EaFal7zyEaQ4gsK3dR1yGS-aaemSU1mBP-9Ka2lajYJfIeTm1yEzgm-JZgVd8HDmjHG8yPUp5inI8ooPT4499AwhCWOK6WCE3GKejTPKKcF6aNitmicSSpYg63AtkljW69WzoDujPKJcfq9sfPE1cnUq4YkeqGsBRPO0EmtTIDhbh-gt6fH2fhlNJk-v44fJiPNM96OlM4ZzxiUjDKclVyUNRcFpoSwmqSYplpgAIWVVjynOFMl5ZqpSlSpIKQANkD3W--6K1dQadjkM3Ltm5XyX9KpRv6e2GYh5-5TRjnFVETB1U7g3UcHoZWrJmgwRllwXZCkIEJgkqU4opd_0KXrvI3Pi1SEcpYVPFLXW0p7F-Lv1_swBMtNJXJfSWQvDtPvyZ8CInCzBUIc2Tn4gyv_2b4B_7CUMQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899073684</pqid></control><display><type>article</type><title>Thiol dependent intramolecular locking of Orai1 channels</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Alansary, Dalia ; Schmidt, Barbara ; Dörr, Kathrin ; Bogeski, Ivan ; Rieger, Heiko ; Kless, Achim ; Niemeyer, Barbara A.</creator><creatorcontrib>Alansary, Dalia ; Schmidt, Barbara ; Dörr, Kathrin ; Bogeski, Ivan ; Rieger, Heiko ; Kless, Achim ; Niemeyer, Barbara A.</creatorcontrib><description>Store-operated Ca
2+
entry mediated by STIM1-gated Orai1 channels is essential to activate immune cells and its inhibition or gain-of-function can lead to immune dysfunction and other pathologies. Reactive oxygen species interacting with cysteine residues can alter protein function. Pretreatment of the Ca
2+
selective Orai1 with the oxidant H
2
O
2
reduces I
CRAC
with C195, distant to the pore, being its major redox sensor. However, the mechanism of inhibition remained elusive. Here we combine experimental and theoretical approaches and show that oxidation of Orai1 leads to reduced subunit interaction, slows diffusion and that either oxidized C195 or its oxidomimetic mutation C195D located at the exit of transmembrane helix 3 virtually eliminates channel activation by intramolecular interaction with S239 of transmembrane helix 4, thereby locking the channel in a closed conformation. Our results demonstrate a novel mechanistic model for ROS-mediated inhibition of Orai1 and identify a candidate residue for pharmaceutical intervention.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep33347</identifier><identifier>PMID: 27624281</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/337/470/1463 ; 631/92/269/1146 ; Biophysics ; Calcium channels ; Calcium influx ; Cysteine ; Enzymes ; Gene expression ; HEK293 Cells ; Humanities and Social Sciences ; Humans ; Mesylates - metabolism ; Microscopy ; multidisciplinary ; Mutation - genetics ; Neoplasm Proteins - metabolism ; Orai1 protein ; ORAI1 Protein - antagonists & inhibitors ; ORAI1 Protein - metabolism ; Oxidation ; Oxidation-Reduction ; Oxidizing agents ; Prostate ; Protein Binding ; Protein Subunits - metabolism ; Proteins ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Science ; Sensors ; Serine - metabolism ; STIM1 protein ; Stromal Interaction Molecule 1 - metabolism ; Sulfhydryl Compounds - metabolism</subject><ispartof>Scientific reports, 2016-09, Vol.6 (1), p.33347-33347, Article 33347</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Sep 2016</rights><rights>Copyright © 2016, The Author(s) 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-ac73463eb32306b49bf49802113f15025c90eea0aca47206ab24c3ad9d59118e3</citedby><cites>FETCH-LOGICAL-c464t-ac73463eb32306b49bf49802113f15025c90eea0aca47206ab24c3ad9d59118e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5022029/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5022029/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,27931,27932,41127,42196,51583,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27624281$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alansary, Dalia</creatorcontrib><creatorcontrib>Schmidt, Barbara</creatorcontrib><creatorcontrib>Dörr, Kathrin</creatorcontrib><creatorcontrib>Bogeski, Ivan</creatorcontrib><creatorcontrib>Rieger, Heiko</creatorcontrib><creatorcontrib>Kless, Achim</creatorcontrib><creatorcontrib>Niemeyer, Barbara A.</creatorcontrib><title>Thiol dependent intramolecular locking of Orai1 channels</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Store-operated Ca
2+
entry mediated by STIM1-gated Orai1 channels is essential to activate immune cells and its inhibition or gain-of-function can lead to immune dysfunction and other pathologies. Reactive oxygen species interacting with cysteine residues can alter protein function. Pretreatment of the Ca
2+
selective Orai1 with the oxidant H
2
O
2
reduces I
CRAC
with C195, distant to the pore, being its major redox sensor. However, the mechanism of inhibition remained elusive. Here we combine experimental and theoretical approaches and show that oxidation of Orai1 leads to reduced subunit interaction, slows diffusion and that either oxidized C195 or its oxidomimetic mutation C195D located at the exit of transmembrane helix 3 virtually eliminates channel activation by intramolecular interaction with S239 of transmembrane helix 4, thereby locking the channel in a closed conformation. Our results demonstrate a novel mechanistic model for ROS-mediated inhibition of Orai1 and identify a candidate residue for pharmaceutical intervention.</description><subject>631/337/470/1463</subject><subject>631/92/269/1146</subject><subject>Biophysics</subject><subject>Calcium channels</subject><subject>Calcium influx</subject><subject>Cysteine</subject><subject>Enzymes</subject><subject>Gene expression</subject><subject>HEK293 Cells</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Mesylates - metabolism</subject><subject>Microscopy</subject><subject>multidisciplinary</subject><subject>Mutation - genetics</subject><subject>Neoplasm Proteins - metabolism</subject><subject>Orai1 protein</subject><subject>ORAI1 Protein - antagonists & inhibitors</subject><subject>ORAI1 Protein - metabolism</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxidizing agents</subject><subject>Prostate</subject><subject>Protein Binding</subject><subject>Protein Subunits - metabolism</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Science</subject><subject>Sensors</subject><subject>Serine - metabolism</subject><subject>STIM1 protein</subject><subject>Stromal Interaction Molecule 1 - metabolism</subject><subject>Sulfhydryl Compounds - metabolism</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkUtLAzEYRYMottQu_AMy4EaFal7zyEaQ4gsK3dR1yGS-aaemSU1mBP-9Ka2lajYJfIeTm1yEzgm-JZgVd8HDmjHG8yPUp5inI8ooPT4499AwhCWOK6WCE3GKejTPKKcF6aNitmicSSpYg63AtkljW69WzoDujPKJcfq9sfPE1cnUq4YkeqGsBRPO0EmtTIDhbh-gt6fH2fhlNJk-v44fJiPNM96OlM4ZzxiUjDKclVyUNRcFpoSwmqSYplpgAIWVVjynOFMl5ZqpSlSpIKQANkD3W--6K1dQadjkM3Ltm5XyX9KpRv6e2GYh5-5TRjnFVETB1U7g3UcHoZWrJmgwRllwXZCkIEJgkqU4opd_0KXrvI3Pi1SEcpYVPFLXW0p7F-Lv1_swBMtNJXJfSWQvDtPvyZ8CInCzBUIc2Tn4gyv_2b4B_7CUMQ</recordid><startdate>20160914</startdate><enddate>20160914</enddate><creator>Alansary, Dalia</creator><creator>Schmidt, Barbara</creator><creator>Dörr, Kathrin</creator><creator>Bogeski, Ivan</creator><creator>Rieger, Heiko</creator><creator>Kless, Achim</creator><creator>Niemeyer, Barbara A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160914</creationdate><title>Thiol dependent intramolecular locking of Orai1 channels</title><author>Alansary, Dalia ; Schmidt, Barbara ; Dörr, Kathrin ; Bogeski, Ivan ; Rieger, Heiko ; Kless, Achim ; Niemeyer, Barbara A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-ac73463eb32306b49bf49802113f15025c90eea0aca47206ab24c3ad9d59118e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>631/337/470/1463</topic><topic>631/92/269/1146</topic><topic>Biophysics</topic><topic>Calcium channels</topic><topic>Calcium influx</topic><topic>Cysteine</topic><topic>Enzymes</topic><topic>Gene expression</topic><topic>HEK293 Cells</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Mesylates - metabolism</topic><topic>Microscopy</topic><topic>multidisciplinary</topic><topic>Mutation - genetics</topic><topic>Neoplasm Proteins - metabolism</topic><topic>Orai1 protein</topic><topic>ORAI1 Protein - antagonists & inhibitors</topic><topic>ORAI1 Protein - metabolism</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxidizing agents</topic><topic>Prostate</topic><topic>Protein Binding</topic><topic>Protein Subunits - metabolism</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Science</topic><topic>Sensors</topic><topic>Serine - metabolism</topic><topic>STIM1 protein</topic><topic>Stromal Interaction Molecule 1 - metabolism</topic><topic>Sulfhydryl Compounds - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alansary, Dalia</creatorcontrib><creatorcontrib>Schmidt, Barbara</creatorcontrib><creatorcontrib>Dörr, Kathrin</creatorcontrib><creatorcontrib>Bogeski, Ivan</creatorcontrib><creatorcontrib>Rieger, Heiko</creatorcontrib><creatorcontrib>Kless, Achim</creatorcontrib><creatorcontrib>Niemeyer, Barbara A.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alansary, Dalia</au><au>Schmidt, Barbara</au><au>Dörr, Kathrin</au><au>Bogeski, Ivan</au><au>Rieger, Heiko</au><au>Kless, Achim</au><au>Niemeyer, Barbara A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thiol dependent intramolecular locking of Orai1 channels</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-09-14</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>33347</spage><epage>33347</epage><pages>33347-33347</pages><artnum>33347</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Store-operated Ca
2+
entry mediated by STIM1-gated Orai1 channels is essential to activate immune cells and its inhibition or gain-of-function can lead to immune dysfunction and other pathologies. Reactive oxygen species interacting with cysteine residues can alter protein function. Pretreatment of the Ca
2+
selective Orai1 with the oxidant H
2
O
2
reduces I
CRAC
with C195, distant to the pore, being its major redox sensor. However, the mechanism of inhibition remained elusive. Here we combine experimental and theoretical approaches and show that oxidation of Orai1 leads to reduced subunit interaction, slows diffusion and that either oxidized C195 or its oxidomimetic mutation C195D located at the exit of transmembrane helix 3 virtually eliminates channel activation by intramolecular interaction with S239 of transmembrane helix 4, thereby locking the channel in a closed conformation. Our results demonstrate a novel mechanistic model for ROS-mediated inhibition of Orai1 and identify a candidate residue for pharmaceutical intervention.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27624281</pmid><doi>10.1038/srep33347</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-09, Vol.6 (1), p.33347-33347, Article 33347 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5022029 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Nature Free; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry |
subjects | 631/337/470/1463 631/92/269/1146 Biophysics Calcium channels Calcium influx Cysteine Enzymes Gene expression HEK293 Cells Humanities and Social Sciences Humans Mesylates - metabolism Microscopy multidisciplinary Mutation - genetics Neoplasm Proteins - metabolism Orai1 protein ORAI1 Protein - antagonists & inhibitors ORAI1 Protein - metabolism Oxidation Oxidation-Reduction Oxidizing agents Prostate Protein Binding Protein Subunits - metabolism Proteins Reactive oxygen species Reactive Oxygen Species - metabolism Science Sensors Serine - metabolism STIM1 protein Stromal Interaction Molecule 1 - metabolism Sulfhydryl Compounds - metabolism |
title | Thiol dependent intramolecular locking of Orai1 channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T16%3A53%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thiol%20dependent%20intramolecular%20locking%20of%20Orai1%20channels&rft.jtitle=Scientific%20reports&rft.au=Alansary,%20Dalia&rft.date=2016-09-14&rft.volume=6&rft.issue=1&rft.spage=33347&rft.epage=33347&rft.pages=33347-33347&rft.artnum=33347&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep33347&rft_dat=%3Cproquest_pubme%3E1819901650%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899073684&rft_id=info:pmid/27624281&rfr_iscdi=true |