Thiol dependent intramolecular locking of Orai1 channels

Store-operated Ca 2+ entry mediated by STIM1-gated Orai1 channels is essential to activate immune cells and its inhibition or gain-of-function can lead to immune dysfunction and other pathologies. Reactive oxygen species interacting with cysteine residues can alter protein function. Pretreatment of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-09, Vol.6 (1), p.33347-33347, Article 33347
Hauptverfasser: Alansary, Dalia, Schmidt, Barbara, Dörr, Kathrin, Bogeski, Ivan, Rieger, Heiko, Kless, Achim, Niemeyer, Barbara A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33347
container_issue 1
container_start_page 33347
container_title Scientific reports
container_volume 6
creator Alansary, Dalia
Schmidt, Barbara
Dörr, Kathrin
Bogeski, Ivan
Rieger, Heiko
Kless, Achim
Niemeyer, Barbara A.
description Store-operated Ca 2+ entry mediated by STIM1-gated Orai1 channels is essential to activate immune cells and its inhibition or gain-of-function can lead to immune dysfunction and other pathologies. Reactive oxygen species interacting with cysteine residues can alter protein function. Pretreatment of the Ca 2+ selective Orai1 with the oxidant H 2 O 2 reduces I CRAC with C195, distant to the pore, being its major redox sensor. However, the mechanism of inhibition remained elusive. Here we combine experimental and theoretical approaches and show that oxidation of Orai1 leads to reduced subunit interaction, slows diffusion and that either oxidized C195 or its oxidomimetic mutation C195D located at the exit of transmembrane helix 3 virtually eliminates channel activation by intramolecular interaction with S239 of transmembrane helix 4, thereby locking the channel in a closed conformation. Our results demonstrate a novel mechanistic model for ROS-mediated inhibition of Orai1 and identify a candidate residue for pharmaceutical intervention.
doi_str_mv 10.1038/srep33347
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5022029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1819901650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-ac73463eb32306b49bf49802113f15025c90eea0aca47206ab24c3ad9d59118e3</originalsourceid><addsrcrecordid>eNplkUtLAzEYRYMottQu_AMy4EaFal7zyEaQ4gsK3dR1yGS-aaemSU1mBP-9Ka2lajYJfIeTm1yEzgm-JZgVd8HDmjHG8yPUp5inI8ooPT4499AwhCWOK6WCE3GKejTPKKcF6aNitmicSSpYg63AtkljW69WzoDujPKJcfq9sfPE1cnUq4YkeqGsBRPO0EmtTIDhbh-gt6fH2fhlNJk-v44fJiPNM96OlM4ZzxiUjDKclVyUNRcFpoSwmqSYplpgAIWVVjynOFMl5ZqpSlSpIKQANkD3W--6K1dQadjkM3Ltm5XyX9KpRv6e2GYh5-5TRjnFVETB1U7g3UcHoZWrJmgwRllwXZCkIEJgkqU4opd_0KXrvI3Pi1SEcpYVPFLXW0p7F-Lv1_swBMtNJXJfSWQvDtPvyZ8CInCzBUIc2Tn4gyv_2b4B_7CUMQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899073684</pqid></control><display><type>article</type><title>Thiol dependent intramolecular locking of Orai1 channels</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Alansary, Dalia ; Schmidt, Barbara ; Dörr, Kathrin ; Bogeski, Ivan ; Rieger, Heiko ; Kless, Achim ; Niemeyer, Barbara A.</creator><creatorcontrib>Alansary, Dalia ; Schmidt, Barbara ; Dörr, Kathrin ; Bogeski, Ivan ; Rieger, Heiko ; Kless, Achim ; Niemeyer, Barbara A.</creatorcontrib><description>Store-operated Ca 2+ entry mediated by STIM1-gated Orai1 channels is essential to activate immune cells and its inhibition or gain-of-function can lead to immune dysfunction and other pathologies. Reactive oxygen species interacting with cysteine residues can alter protein function. Pretreatment of the Ca 2+ selective Orai1 with the oxidant H 2 O 2 reduces I CRAC with C195, distant to the pore, being its major redox sensor. However, the mechanism of inhibition remained elusive. Here we combine experimental and theoretical approaches and show that oxidation of Orai1 leads to reduced subunit interaction, slows diffusion and that either oxidized C195 or its oxidomimetic mutation C195D located at the exit of transmembrane helix 3 virtually eliminates channel activation by intramolecular interaction with S239 of transmembrane helix 4, thereby locking the channel in a closed conformation. Our results demonstrate a novel mechanistic model for ROS-mediated inhibition of Orai1 and identify a candidate residue for pharmaceutical intervention.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep33347</identifier><identifier>PMID: 27624281</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/337/470/1463 ; 631/92/269/1146 ; Biophysics ; Calcium channels ; Calcium influx ; Cysteine ; Enzymes ; Gene expression ; HEK293 Cells ; Humanities and Social Sciences ; Humans ; Mesylates - metabolism ; Microscopy ; multidisciplinary ; Mutation - genetics ; Neoplasm Proteins - metabolism ; Orai1 protein ; ORAI1 Protein - antagonists &amp; inhibitors ; ORAI1 Protein - metabolism ; Oxidation ; Oxidation-Reduction ; Oxidizing agents ; Prostate ; Protein Binding ; Protein Subunits - metabolism ; Proteins ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Science ; Sensors ; Serine - metabolism ; STIM1 protein ; Stromal Interaction Molecule 1 - metabolism ; Sulfhydryl Compounds - metabolism</subject><ispartof>Scientific reports, 2016-09, Vol.6 (1), p.33347-33347, Article 33347</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Sep 2016</rights><rights>Copyright © 2016, The Author(s) 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-ac73463eb32306b49bf49802113f15025c90eea0aca47206ab24c3ad9d59118e3</citedby><cites>FETCH-LOGICAL-c464t-ac73463eb32306b49bf49802113f15025c90eea0aca47206ab24c3ad9d59118e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5022029/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5022029/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,27931,27932,41127,42196,51583,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27624281$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alansary, Dalia</creatorcontrib><creatorcontrib>Schmidt, Barbara</creatorcontrib><creatorcontrib>Dörr, Kathrin</creatorcontrib><creatorcontrib>Bogeski, Ivan</creatorcontrib><creatorcontrib>Rieger, Heiko</creatorcontrib><creatorcontrib>Kless, Achim</creatorcontrib><creatorcontrib>Niemeyer, Barbara A.</creatorcontrib><title>Thiol dependent intramolecular locking of Orai1 channels</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Store-operated Ca 2+ entry mediated by STIM1-gated Orai1 channels is essential to activate immune cells and its inhibition or gain-of-function can lead to immune dysfunction and other pathologies. Reactive oxygen species interacting with cysteine residues can alter protein function. Pretreatment of the Ca 2+ selective Orai1 with the oxidant H 2 O 2 reduces I CRAC with C195, distant to the pore, being its major redox sensor. However, the mechanism of inhibition remained elusive. Here we combine experimental and theoretical approaches and show that oxidation of Orai1 leads to reduced subunit interaction, slows diffusion and that either oxidized C195 or its oxidomimetic mutation C195D located at the exit of transmembrane helix 3 virtually eliminates channel activation by intramolecular interaction with S239 of transmembrane helix 4, thereby locking the channel in a closed conformation. Our results demonstrate a novel mechanistic model for ROS-mediated inhibition of Orai1 and identify a candidate residue for pharmaceutical intervention.</description><subject>631/337/470/1463</subject><subject>631/92/269/1146</subject><subject>Biophysics</subject><subject>Calcium channels</subject><subject>Calcium influx</subject><subject>Cysteine</subject><subject>Enzymes</subject><subject>Gene expression</subject><subject>HEK293 Cells</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Mesylates - metabolism</subject><subject>Microscopy</subject><subject>multidisciplinary</subject><subject>Mutation - genetics</subject><subject>Neoplasm Proteins - metabolism</subject><subject>Orai1 protein</subject><subject>ORAI1 Protein - antagonists &amp; inhibitors</subject><subject>ORAI1 Protein - metabolism</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxidizing agents</subject><subject>Prostate</subject><subject>Protein Binding</subject><subject>Protein Subunits - metabolism</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Science</subject><subject>Sensors</subject><subject>Serine - metabolism</subject><subject>STIM1 protein</subject><subject>Stromal Interaction Molecule 1 - metabolism</subject><subject>Sulfhydryl Compounds - metabolism</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkUtLAzEYRYMottQu_AMy4EaFal7zyEaQ4gsK3dR1yGS-aaemSU1mBP-9Ka2lajYJfIeTm1yEzgm-JZgVd8HDmjHG8yPUp5inI8ooPT4499AwhCWOK6WCE3GKejTPKKcF6aNitmicSSpYg63AtkljW69WzoDujPKJcfq9sfPE1cnUq4YkeqGsBRPO0EmtTIDhbh-gt6fH2fhlNJk-v44fJiPNM96OlM4ZzxiUjDKclVyUNRcFpoSwmqSYplpgAIWVVjynOFMl5ZqpSlSpIKQANkD3W--6K1dQadjkM3Ltm5XyX9KpRv6e2GYh5-5TRjnFVETB1U7g3UcHoZWrJmgwRllwXZCkIEJgkqU4opd_0KXrvI3Pi1SEcpYVPFLXW0p7F-Lv1_swBMtNJXJfSWQvDtPvyZ8CInCzBUIc2Tn4gyv_2b4B_7CUMQ</recordid><startdate>20160914</startdate><enddate>20160914</enddate><creator>Alansary, Dalia</creator><creator>Schmidt, Barbara</creator><creator>Dörr, Kathrin</creator><creator>Bogeski, Ivan</creator><creator>Rieger, Heiko</creator><creator>Kless, Achim</creator><creator>Niemeyer, Barbara A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160914</creationdate><title>Thiol dependent intramolecular locking of Orai1 channels</title><author>Alansary, Dalia ; Schmidt, Barbara ; Dörr, Kathrin ; Bogeski, Ivan ; Rieger, Heiko ; Kless, Achim ; Niemeyer, Barbara A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-ac73463eb32306b49bf49802113f15025c90eea0aca47206ab24c3ad9d59118e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>631/337/470/1463</topic><topic>631/92/269/1146</topic><topic>Biophysics</topic><topic>Calcium channels</topic><topic>Calcium influx</topic><topic>Cysteine</topic><topic>Enzymes</topic><topic>Gene expression</topic><topic>HEK293 Cells</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Mesylates - metabolism</topic><topic>Microscopy</topic><topic>multidisciplinary</topic><topic>Mutation - genetics</topic><topic>Neoplasm Proteins - metabolism</topic><topic>Orai1 protein</topic><topic>ORAI1 Protein - antagonists &amp; inhibitors</topic><topic>ORAI1 Protein - metabolism</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxidizing agents</topic><topic>Prostate</topic><topic>Protein Binding</topic><topic>Protein Subunits - metabolism</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Science</topic><topic>Sensors</topic><topic>Serine - metabolism</topic><topic>STIM1 protein</topic><topic>Stromal Interaction Molecule 1 - metabolism</topic><topic>Sulfhydryl Compounds - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alansary, Dalia</creatorcontrib><creatorcontrib>Schmidt, Barbara</creatorcontrib><creatorcontrib>Dörr, Kathrin</creatorcontrib><creatorcontrib>Bogeski, Ivan</creatorcontrib><creatorcontrib>Rieger, Heiko</creatorcontrib><creatorcontrib>Kless, Achim</creatorcontrib><creatorcontrib>Niemeyer, Barbara A.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alansary, Dalia</au><au>Schmidt, Barbara</au><au>Dörr, Kathrin</au><au>Bogeski, Ivan</au><au>Rieger, Heiko</au><au>Kless, Achim</au><au>Niemeyer, Barbara A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thiol dependent intramolecular locking of Orai1 channels</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-09-14</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>33347</spage><epage>33347</epage><pages>33347-33347</pages><artnum>33347</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Store-operated Ca 2+ entry mediated by STIM1-gated Orai1 channels is essential to activate immune cells and its inhibition or gain-of-function can lead to immune dysfunction and other pathologies. Reactive oxygen species interacting with cysteine residues can alter protein function. Pretreatment of the Ca 2+ selective Orai1 with the oxidant H 2 O 2 reduces I CRAC with C195, distant to the pore, being its major redox sensor. However, the mechanism of inhibition remained elusive. Here we combine experimental and theoretical approaches and show that oxidation of Orai1 leads to reduced subunit interaction, slows diffusion and that either oxidized C195 or its oxidomimetic mutation C195D located at the exit of transmembrane helix 3 virtually eliminates channel activation by intramolecular interaction with S239 of transmembrane helix 4, thereby locking the channel in a closed conformation. Our results demonstrate a novel mechanistic model for ROS-mediated inhibition of Orai1 and identify a candidate residue for pharmaceutical intervention.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27624281</pmid><doi>10.1038/srep33347</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-09, Vol.6 (1), p.33347-33347, Article 33347
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5022029
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Nature Free; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry
subjects 631/337/470/1463
631/92/269/1146
Biophysics
Calcium channels
Calcium influx
Cysteine
Enzymes
Gene expression
HEK293 Cells
Humanities and Social Sciences
Humans
Mesylates - metabolism
Microscopy
multidisciplinary
Mutation - genetics
Neoplasm Proteins - metabolism
Orai1 protein
ORAI1 Protein - antagonists & inhibitors
ORAI1 Protein - metabolism
Oxidation
Oxidation-Reduction
Oxidizing agents
Prostate
Protein Binding
Protein Subunits - metabolism
Proteins
Reactive oxygen species
Reactive Oxygen Species - metabolism
Science
Sensors
Serine - metabolism
STIM1 protein
Stromal Interaction Molecule 1 - metabolism
Sulfhydryl Compounds - metabolism
title Thiol dependent intramolecular locking of Orai1 channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T16%3A53%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thiol%20dependent%20intramolecular%20locking%20of%20Orai1%20channels&rft.jtitle=Scientific%20reports&rft.au=Alansary,%20Dalia&rft.date=2016-09-14&rft.volume=6&rft.issue=1&rft.spage=33347&rft.epage=33347&rft.pages=33347-33347&rft.artnum=33347&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep33347&rft_dat=%3Cproquest_pubme%3E1819901650%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899073684&rft_id=info:pmid/27624281&rfr_iscdi=true