Reproducible Ultrahigh SERS Enhancement in Single Deterministic Hotspots Using Nanosphere-Plane Antennas Under Radially Polarized Excitation

Surface enhanced Raman scattering (SERS) in a nanometer size hotspot has empowered the investigation of chemical structures and dynamic behaviors of one and a few molecules. However, further advancement is hindered by lack of large enough yet reproducible enhancement in single deterministic hotspots...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-09, Vol.6 (1), p.33218-33218, Article 33218
Hauptverfasser: Long, Jing, Yi, Hui, Li, Hongquan, Lei, Zeyu, Yang, Tian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33218
container_issue 1
container_start_page 33218
container_title Scientific reports
container_volume 6
creator Long, Jing
Yi, Hui
Li, Hongquan
Lei, Zeyu
Yang, Tian
description Surface enhanced Raman scattering (SERS) in a nanometer size hotspot has empowered the investigation of chemical structures and dynamic behaviors of one and a few molecules. However, further advancement is hindered by lack of large enough yet reproducible enhancement in single deterministic hotspots. To resolve this problem, here we introduce a nanosphere-plane antenna under radially polarized laser excitation experiment, which provides an electromagnetic enhancement of 10 9~10 at the gap of each individual nanosphere-plane antenna and a root-mean-square error down to 10 0.08 between them. The experiment also reveals a nonlinear SERS behavior with less than one plasmon, which is also observed within a single hotspot. The unprecedented simultaneous achievement of ultrahigh enhancement and reproducibility in deterministic individual hotspots is attributed to the combination of a well-controlled hotspot geometry, the efficient coupling between vertical antenna and laser which produces orders of magnitude higher enhancement than previous excitation methods, and low power operation which is critical for high reproducibility. Our method opens a path for systematic studies on single and few molecule SERS and their surface chemistry in an in-situ and well-controlled manner.
doi_str_mv 10.1038/srep33218
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5020428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899076888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-c708fcdd1e8a4d857a516c5ebb8707e2fac8c03df2e98f699104da902f229a623</originalsourceid><addsrcrecordid>eNplkd9qFDEYxQdRbKm98AUk4I0Ko0nmX3IjlLpaoWjZda9DNvlmJyWTTJOMWJ_BhzbL1mXVQEjg_Dj5Tk5RPCf4LcEVexcDTFVFCXtUnFJcNyWtKH18dD8pzmO8xXk1lNeEPy1OaNdSQjA_LX4tYQpez8psLKC1TUEOZjug1WK5Qgs3SKdgBJeQcWhl3DZDHyBBGI0zMRmFrnyKU95oHbOMvkjn4zRAgPLGSgfowiVwTmbdaQhoKbWR1t6jG29lMD9Bo8UPZZJMxrtnxZNe2gjnD-dZsf64-HZ5VV5__fT58uK6VHXFUqk6zHqlNQEma82aTjakVQ1sNqzDHdBeKqZwpXsKnPUt5wTXWnJMe0q5bGl1Vrzf-07zZgStcr4grZiCGWW4F14a8bfizCC2_rtocP5VyrLBqweD4O9miEmMJiqwu8R-joIwwusK467L6Mt_0Fs_B5fjZYpz3LWM7Qxf7ykVfMyN9odhCBa7msWh5sy-OJ7-QP4pNQNv9kDMkttCOHryP7ffWEe0jQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899076888</pqid></control><display><type>article</type><title>Reproducible Ultrahigh SERS Enhancement in Single Deterministic Hotspots Using Nanosphere-Plane Antennas Under Radially Polarized Excitation</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Long, Jing ; Yi, Hui ; Li, Hongquan ; Lei, Zeyu ; Yang, Tian</creator><creatorcontrib>Long, Jing ; Yi, Hui ; Li, Hongquan ; Lei, Zeyu ; Yang, Tian</creatorcontrib><description>Surface enhanced Raman scattering (SERS) in a nanometer size hotspot has empowered the investigation of chemical structures and dynamic behaviors of one and a few molecules. However, further advancement is hindered by lack of large enough yet reproducible enhancement in single deterministic hotspots. To resolve this problem, here we introduce a nanosphere-plane antenna under radially polarized laser excitation experiment, which provides an electromagnetic enhancement of 10 9~10 at the gap of each individual nanosphere-plane antenna and a root-mean-square error down to 10 0.08 between them. The experiment also reveals a nonlinear SERS behavior with less than one plasmon, which is also observed within a single hotspot. The unprecedented simultaneous achievement of ultrahigh enhancement and reproducibility in deterministic individual hotspots is attributed to the combination of a well-controlled hotspot geometry, the efficient coupling between vertical antenna and laser which produces orders of magnitude higher enhancement than previous excitation methods, and low power operation which is critical for high reproducibility. Our method opens a path for systematic studies on single and few molecule SERS and their surface chemistry in an in-situ and well-controlled manner.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep33218</identifier><identifier>PMID: 27621109</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/133 ; 639/638/542/969 ; 639/925/927/1021 ; 639/925/930/12 ; Antennas ; Humanities and Social Sciences ; multidisciplinary ; Science ; Surface chemistry</subject><ispartof>Scientific reports, 2016-09, Vol.6 (1), p.33218-33218, Article 33218</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Sep 2016</rights><rights>Copyright © 2016, The Author(s) 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-c708fcdd1e8a4d857a516c5ebb8707e2fac8c03df2e98f699104da902f229a623</citedby><cites>FETCH-LOGICAL-c438t-c708fcdd1e8a4d857a516c5ebb8707e2fac8c03df2e98f699104da902f229a623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5020428/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5020428/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,27931,27932,41127,42196,51583,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27621109$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Long, Jing</creatorcontrib><creatorcontrib>Yi, Hui</creatorcontrib><creatorcontrib>Li, Hongquan</creatorcontrib><creatorcontrib>Lei, Zeyu</creatorcontrib><creatorcontrib>Yang, Tian</creatorcontrib><title>Reproducible Ultrahigh SERS Enhancement in Single Deterministic Hotspots Using Nanosphere-Plane Antennas Under Radially Polarized Excitation</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Surface enhanced Raman scattering (SERS) in a nanometer size hotspot has empowered the investigation of chemical structures and dynamic behaviors of one and a few molecules. However, further advancement is hindered by lack of large enough yet reproducible enhancement in single deterministic hotspots. To resolve this problem, here we introduce a nanosphere-plane antenna under radially polarized laser excitation experiment, which provides an electromagnetic enhancement of 10 9~10 at the gap of each individual nanosphere-plane antenna and a root-mean-square error down to 10 0.08 between them. The experiment also reveals a nonlinear SERS behavior with less than one plasmon, which is also observed within a single hotspot. The unprecedented simultaneous achievement of ultrahigh enhancement and reproducibility in deterministic individual hotspots is attributed to the combination of a well-controlled hotspot geometry, the efficient coupling between vertical antenna and laser which produces orders of magnitude higher enhancement than previous excitation methods, and low power operation which is critical for high reproducibility. Our method opens a path for systematic studies on single and few molecule SERS and their surface chemistry in an in-situ and well-controlled manner.</description><subject>140/133</subject><subject>639/638/542/969</subject><subject>639/925/927/1021</subject><subject>639/925/930/12</subject><subject>Antennas</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Surface chemistry</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkd9qFDEYxQdRbKm98AUk4I0Ko0nmX3IjlLpaoWjZda9DNvlmJyWTTJOMWJ_BhzbL1mXVQEjg_Dj5Tk5RPCf4LcEVexcDTFVFCXtUnFJcNyWtKH18dD8pzmO8xXk1lNeEPy1OaNdSQjA_LX4tYQpez8psLKC1TUEOZjug1WK5Qgs3SKdgBJeQcWhl3DZDHyBBGI0zMRmFrnyKU95oHbOMvkjn4zRAgPLGSgfowiVwTmbdaQhoKbWR1t6jG29lMD9Bo8UPZZJMxrtnxZNe2gjnD-dZsf64-HZ5VV5__fT58uK6VHXFUqk6zHqlNQEma82aTjakVQ1sNqzDHdBeKqZwpXsKnPUt5wTXWnJMe0q5bGl1Vrzf-07zZgStcr4grZiCGWW4F14a8bfizCC2_rtocP5VyrLBqweD4O9miEmMJiqwu8R-joIwwusK467L6Mt_0Fs_B5fjZYpz3LWM7Qxf7ykVfMyN9odhCBa7msWh5sy-OJ7-QP4pNQNv9kDMkttCOHryP7ffWEe0jQ</recordid><startdate>20160913</startdate><enddate>20160913</enddate><creator>Long, Jing</creator><creator>Yi, Hui</creator><creator>Li, Hongquan</creator><creator>Lei, Zeyu</creator><creator>Yang, Tian</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160913</creationdate><title>Reproducible Ultrahigh SERS Enhancement in Single Deterministic Hotspots Using Nanosphere-Plane Antennas Under Radially Polarized Excitation</title><author>Long, Jing ; Yi, Hui ; Li, Hongquan ; Lei, Zeyu ; Yang, Tian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-c708fcdd1e8a4d857a516c5ebb8707e2fac8c03df2e98f699104da902f229a623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>140/133</topic><topic>639/638/542/969</topic><topic>639/925/927/1021</topic><topic>639/925/930/12</topic><topic>Antennas</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Jing</creatorcontrib><creatorcontrib>Yi, Hui</creatorcontrib><creatorcontrib>Li, Hongquan</creatorcontrib><creatorcontrib>Lei, Zeyu</creatorcontrib><creatorcontrib>Yang, Tian</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Jing</au><au>Yi, Hui</au><au>Li, Hongquan</au><au>Lei, Zeyu</au><au>Yang, Tian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reproducible Ultrahigh SERS Enhancement in Single Deterministic Hotspots Using Nanosphere-Plane Antennas Under Radially Polarized Excitation</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-09-13</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>33218</spage><epage>33218</epage><pages>33218-33218</pages><artnum>33218</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Surface enhanced Raman scattering (SERS) in a nanometer size hotspot has empowered the investigation of chemical structures and dynamic behaviors of one and a few molecules. However, further advancement is hindered by lack of large enough yet reproducible enhancement in single deterministic hotspots. To resolve this problem, here we introduce a nanosphere-plane antenna under radially polarized laser excitation experiment, which provides an electromagnetic enhancement of 10 9~10 at the gap of each individual nanosphere-plane antenna and a root-mean-square error down to 10 0.08 between them. The experiment also reveals a nonlinear SERS behavior with less than one plasmon, which is also observed within a single hotspot. The unprecedented simultaneous achievement of ultrahigh enhancement and reproducibility in deterministic individual hotspots is attributed to the combination of a well-controlled hotspot geometry, the efficient coupling between vertical antenna and laser which produces orders of magnitude higher enhancement than previous excitation methods, and low power operation which is critical for high reproducibility. Our method opens a path for systematic studies on single and few molecule SERS and their surface chemistry in an in-situ and well-controlled manner.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27621109</pmid><doi>10.1038/srep33218</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-09, Vol.6 (1), p.33218-33218, Article 33218
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5020428
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Nature Free; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry
subjects 140/133
639/638/542/969
639/925/927/1021
639/925/930/12
Antennas
Humanities and Social Sciences
multidisciplinary
Science
Surface chemistry
title Reproducible Ultrahigh SERS Enhancement in Single Deterministic Hotspots Using Nanosphere-Plane Antennas Under Radially Polarized Excitation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T03%3A39%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reproducible%20Ultrahigh%20SERS%20Enhancement%20in%20Single%20Deterministic%20Hotspots%20Using%20Nanosphere-Plane%20Antennas%20Under%20Radially%20Polarized%20Excitation&rft.jtitle=Scientific%20reports&rft.au=Long,%20Jing&rft.date=2016-09-13&rft.volume=6&rft.issue=1&rft.spage=33218&rft.epage=33218&rft.pages=33218-33218&rft.artnum=33218&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep33218&rft_dat=%3Cproquest_pubme%3E1899076888%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899076888&rft_id=info:pmid/27621109&rfr_iscdi=true