Mass concentration in a nonlocal model of clonal selection
Self-renewal is a constitutive property of stem cells. Testing the cancer stem cell hypothesis requires investigation of the impact of self-renewal on cancer expansion. To better understand this impact, we propose a mathematical model describing the dynamics of a continuum of cell clones structured...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical biology 2016-10, Vol.73 (4), p.1001-1033 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1033 |
---|---|
container_issue | 4 |
container_start_page | 1001 |
container_title | Journal of mathematical biology |
container_volume | 73 |
creator | Busse, J.-E. Gwiazda, P. Marciniak-Czochra, A. |
description | Self-renewal is a constitutive property of stem cells. Testing the cancer stem cell hypothesis requires investigation of the impact of self-renewal on cancer expansion. To better understand this impact, we propose a mathematical model describing the dynamics of a continuum of cell clones structured by the self-renewal potential. The model is an extension of the finite multi-compartment models of interactions between normal and cancer cells in acute leukemias. It takes a form of a system of integro-differential equations with a nonlinear and nonlocal coupling which describes regulatory feedback loops of cell proliferation and differentiation. We show that this coupling leads to mass concentration in points corresponding to the maxima of the self-renewal potential and the solutions of the model tend asymptotically to Dirac measures multiplied by positive constants. Furthermore, using a Lyapunov function constructed for the finite dimensional counterpart of the model, we prove that the total mass of the solution converges to a globally stable equilibrium. Additionally, we show stability of the model in the space of positive Radon measures equipped with the flat metric (bounded Lipschitz distance). Analytical results are illustrated by numerical simulations. |
doi_str_mv | 10.1007/s00285-016-0979-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5018043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4176817151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-c58496976497521bfb08368ae5582d57e34189e1d4447905ed04df3cb14233c13</originalsourceid><addsrcrecordid>eNp1kU1LxDAQhoMouq7-AC9S8OKlOpOvJh4EEb9A8aLnkE3TtZJNtNkV_Pd27SoqeMkQ5pl33uElZA_hCAGq4wxAlSgBZQm60iVbIyPkjJbIUa6TETBgpVRIt8h2zs8AWAmNm2SLSs0kMDYiJ3c258Kl6Hycd3bepli0sbBFTDEkZ0MxS7UPRWoKF1Ls_9kH75bcDtlobMh-d1XH5PHy4uH8ury9v7o5P7stnWBy3r-Ka6kryXUlKE6aCSgmlfVCKFqLyjOOSnusOeeVBuFr4HXD3AQ5ZcwhG5PTQfdlMZn5ejAazEvXzmz3bpJtze9ObJ_MNL0ZAaiAs17gcCXQpdeFz3Mza7PzIdjo0yIbVKgYpxxojx78QZ_TouvPHijgn4pjggPlupRz55tvMwhmmYwZkjF9MmaZjFma2P95xffEVxQ9QAcg96049d2P1f-qfgDoOpc_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1818041804</pqid></control><display><type>article</type><title>Mass concentration in a nonlocal model of clonal selection</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Busse, J.-E. ; Gwiazda, P. ; Marciniak-Czochra, A.</creator><creatorcontrib>Busse, J.-E. ; Gwiazda, P. ; Marciniak-Czochra, A.</creatorcontrib><description>Self-renewal is a constitutive property of stem cells. Testing the cancer stem cell hypothesis requires investigation of the impact of self-renewal on cancer expansion. To better understand this impact, we propose a mathematical model describing the dynamics of a continuum of cell clones structured by the self-renewal potential. The model is an extension of the finite multi-compartment models of interactions between normal and cancer cells in acute leukemias. It takes a form of a system of integro-differential equations with a nonlinear and nonlocal coupling which describes regulatory feedback loops of cell proliferation and differentiation. We show that this coupling leads to mass concentration in points corresponding to the maxima of the self-renewal potential and the solutions of the model tend asymptotically to Dirac measures multiplied by positive constants. Furthermore, using a Lyapunov function constructed for the finite dimensional counterpart of the model, we prove that the total mass of the solution converges to a globally stable equilibrium. Additionally, we show stability of the model in the space of positive Radon measures equipped with the flat metric (bounded Lipschitz distance). Analytical results are illustrated by numerical simulations.</description><identifier>ISSN: 0303-6812</identifier><identifier>EISSN: 1432-1416</identifier><identifier>DOI: 10.1007/s00285-016-0979-3</identifier><identifier>PMID: 26936033</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Cell Differentiation ; Cell Proliferation ; Clone Cells ; Computer Simulation ; Humans ; Mathematical and Computational Biology ; Mathematics ; Mathematics and Statistics ; Models, Biological ; Neoplasms ; Stem Cells</subject><ispartof>Journal of mathematical biology, 2016-10, Vol.73 (4), p.1001-1033</ispartof><rights>The Author(s) 2016</rights><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-c58496976497521bfb08368ae5582d57e34189e1d4447905ed04df3cb14233c13</citedby><cites>FETCH-LOGICAL-c536t-c58496976497521bfb08368ae5582d57e34189e1d4447905ed04df3cb14233c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00285-016-0979-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00285-016-0979-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26936033$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Busse, J.-E.</creatorcontrib><creatorcontrib>Gwiazda, P.</creatorcontrib><creatorcontrib>Marciniak-Czochra, A.</creatorcontrib><title>Mass concentration in a nonlocal model of clonal selection</title><title>Journal of mathematical biology</title><addtitle>J. Math. Biol</addtitle><addtitle>J Math Biol</addtitle><description>Self-renewal is a constitutive property of stem cells. Testing the cancer stem cell hypothesis requires investigation of the impact of self-renewal on cancer expansion. To better understand this impact, we propose a mathematical model describing the dynamics of a continuum of cell clones structured by the self-renewal potential. The model is an extension of the finite multi-compartment models of interactions between normal and cancer cells in acute leukemias. It takes a form of a system of integro-differential equations with a nonlinear and nonlocal coupling which describes regulatory feedback loops of cell proliferation and differentiation. We show that this coupling leads to mass concentration in points corresponding to the maxima of the self-renewal potential and the solutions of the model tend asymptotically to Dirac measures multiplied by positive constants. Furthermore, using a Lyapunov function constructed for the finite dimensional counterpart of the model, we prove that the total mass of the solution converges to a globally stable equilibrium. Additionally, we show stability of the model in the space of positive Radon measures equipped with the flat metric (bounded Lipschitz distance). Analytical results are illustrated by numerical simulations.</description><subject>Applications of Mathematics</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>Clone Cells</subject><subject>Computer Simulation</subject><subject>Humans</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Models, Biological</subject><subject>Neoplasms</subject><subject>Stem Cells</subject><issn>0303-6812</issn><issn>1432-1416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kU1LxDAQhoMouq7-AC9S8OKlOpOvJh4EEb9A8aLnkE3TtZJNtNkV_Pd27SoqeMkQ5pl33uElZA_hCAGq4wxAlSgBZQm60iVbIyPkjJbIUa6TETBgpVRIt8h2zs8AWAmNm2SLSs0kMDYiJ3c258Kl6Hycd3bepli0sbBFTDEkZ0MxS7UPRWoKF1Ls_9kH75bcDtlobMh-d1XH5PHy4uH8ury9v7o5P7stnWBy3r-Ka6kryXUlKE6aCSgmlfVCKFqLyjOOSnusOeeVBuFr4HXD3AQ5ZcwhG5PTQfdlMZn5ejAazEvXzmz3bpJtze9ObJ_MNL0ZAaiAs17gcCXQpdeFz3Mza7PzIdjo0yIbVKgYpxxojx78QZ_TouvPHijgn4pjggPlupRz55tvMwhmmYwZkjF9MmaZjFma2P95xffEVxQ9QAcg96049d2P1f-qfgDoOpc_</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Busse, J.-E.</creator><creator>Gwiazda, P.</creator><creator>Marciniak-Czochra, A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>M7Z</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161001</creationdate><title>Mass concentration in a nonlocal model of clonal selection</title><author>Busse, J.-E. ; Gwiazda, P. ; Marciniak-Czochra, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-c58496976497521bfb08368ae5582d57e34189e1d4447905ed04df3cb14233c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applications of Mathematics</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>Clone Cells</topic><topic>Computer Simulation</topic><topic>Humans</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Models, Biological</topic><topic>Neoplasms</topic><topic>Stem Cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Busse, J.-E.</creatorcontrib><creatorcontrib>Gwiazda, P.</creatorcontrib><creatorcontrib>Marciniak-Czochra, A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Busse, J.-E.</au><au>Gwiazda, P.</au><au>Marciniak-Czochra, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mass concentration in a nonlocal model of clonal selection</atitle><jtitle>Journal of mathematical biology</jtitle><stitle>J. Math. Biol</stitle><addtitle>J Math Biol</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>73</volume><issue>4</issue><spage>1001</spage><epage>1033</epage><pages>1001-1033</pages><issn>0303-6812</issn><eissn>1432-1416</eissn><abstract>Self-renewal is a constitutive property of stem cells. Testing the cancer stem cell hypothesis requires investigation of the impact of self-renewal on cancer expansion. To better understand this impact, we propose a mathematical model describing the dynamics of a continuum of cell clones structured by the self-renewal potential. The model is an extension of the finite multi-compartment models of interactions between normal and cancer cells in acute leukemias. It takes a form of a system of integro-differential equations with a nonlinear and nonlocal coupling which describes regulatory feedback loops of cell proliferation and differentiation. We show that this coupling leads to mass concentration in points corresponding to the maxima of the self-renewal potential and the solutions of the model tend asymptotically to Dirac measures multiplied by positive constants. Furthermore, using a Lyapunov function constructed for the finite dimensional counterpart of the model, we prove that the total mass of the solution converges to a globally stable equilibrium. Additionally, we show stability of the model in the space of positive Radon measures equipped with the flat metric (bounded Lipschitz distance). Analytical results are illustrated by numerical simulations.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>26936033</pmid><doi>10.1007/s00285-016-0979-3</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0303-6812 |
ispartof | Journal of mathematical biology, 2016-10, Vol.73 (4), p.1001-1033 |
issn | 0303-6812 1432-1416 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5018043 |
source | MEDLINE; SpringerLink Journals |
subjects | Applications of Mathematics Cell Differentiation Cell Proliferation Clone Cells Computer Simulation Humans Mathematical and Computational Biology Mathematics Mathematics and Statistics Models, Biological Neoplasms Stem Cells |
title | Mass concentration in a nonlocal model of clonal selection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T10%3A52%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mass%20concentration%20in%20a%20nonlocal%20model%20of%20clonal%20selection&rft.jtitle=Journal%20of%20mathematical%20biology&rft.au=Busse,%20J.-E.&rft.date=2016-10-01&rft.volume=73&rft.issue=4&rft.spage=1001&rft.epage=1033&rft.pages=1001-1033&rft.issn=0303-6812&rft.eissn=1432-1416&rft_id=info:doi/10.1007/s00285-016-0979-3&rft_dat=%3Cproquest_pubme%3E4176817151%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1818041804&rft_id=info:pmid/26936033&rfr_iscdi=true |