Mechanically activated artificial cell by using microfluidics
All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2016-09, Vol.6 (1), p.32912-32912, Article 32912 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 32912 |
---|---|
container_issue | 1 |
container_start_page | 32912 |
container_title | Scientific reports |
container_volume | 6 |
creator | Ho, Kenneth K. Y. Lee, Lap Man Liu, Allen P. |
description | All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up
in vitro
reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology. |
doi_str_mv | 10.1038/srep32912 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5017192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1819122866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-f97a62c1f590ac423bc7b9b358e15a5adc6679713de351c55057c59e3cf783df3</originalsourceid><addsrcrecordid>eNplkV1LwzAUhoMoTuYu_ANS8EaFaj6aprlQkOEXTLzR65CmyZaRtjNpB_v3ZmyOqefmHDgP7_l4AThD8AZBUtwGrxcEc4QPwAmGGU0xwfhwrx6AUQhzGINiniF-DAaY5QhyjE7A3ZtWM9lYJZ1bJVJ1dik7XSXSd9ZYZaVLlHYuKVdJH2wzTWqrfGtcbyurwik4MtIFPdrmIfh8evwYv6ST9-fX8cMkVRRmXWo4kzlWyFAOpcowKRUreUlooRGVVFYqzxlniFSaUKQohZQpyjVRhhWkMmQI7je6i76sdaV003npxMLbWvqVaKUVvzuNnYlpuxQUIoY4jgKXWwHffvU6dKK2YX2YbHTbB4EKFD-IizyP6MUfdN72vonnRYpzmCMGaaSuNlT8RogWmN0yCIq1L2LnS2TP97ffkT8uROB6A4TYaqba7438p_YNrzyW-w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899061705</pqid></control><display><type>article</type><title>Mechanically activated artificial cell by using microfluidics</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ho, Kenneth K. Y. ; Lee, Lap Man ; Liu, Allen P.</creator><creatorcontrib>Ho, Kenneth K. Y. ; Lee, Lap Man ; Liu, Allen P.</creatorcontrib><description>All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up
in vitro
reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep32912</identifier><identifier>PMID: 27610921</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/61/2049 ; 639/166/985 ; Artificial Cells ; Automation ; Calcium influx ; Compression ; Emulsions ; Engineering ; Flow channels ; Humanities and Social Sciences ; Lab-On-A-Chip Devices ; Lipids ; Macromolecules ; Mechanotransduction ; Microfluidics ; Microfluidics - methods ; multidisciplinary ; Science ; Synthetic biology ; Synthetic Biology - methods ; Thinning ; Trapping</subject><ispartof>Scientific reports, 2016-09, Vol.6 (1), p.32912-32912, Article 32912</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Sep 2016</rights><rights>Copyright © 2016, The Author(s) 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-f97a62c1f590ac423bc7b9b358e15a5adc6679713de351c55057c59e3cf783df3</citedby><cites>FETCH-LOGICAL-c504t-f97a62c1f590ac423bc7b9b358e15a5adc6679713de351c55057c59e3cf783df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5017192/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5017192/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27915,27916,41111,42180,51567,53782,53784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27610921$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ho, Kenneth K. Y.</creatorcontrib><creatorcontrib>Lee, Lap Man</creatorcontrib><creatorcontrib>Liu, Allen P.</creatorcontrib><title>Mechanically activated artificial cell by using microfluidics</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up
in vitro
reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology.</description><subject>631/61/2049</subject><subject>639/166/985</subject><subject>Artificial Cells</subject><subject>Automation</subject><subject>Calcium influx</subject><subject>Compression</subject><subject>Emulsions</subject><subject>Engineering</subject><subject>Flow channels</subject><subject>Humanities and Social Sciences</subject><subject>Lab-On-A-Chip Devices</subject><subject>Lipids</subject><subject>Macromolecules</subject><subject>Mechanotransduction</subject><subject>Microfluidics</subject><subject>Microfluidics - methods</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Synthetic biology</subject><subject>Synthetic Biology - methods</subject><subject>Thinning</subject><subject>Trapping</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkV1LwzAUhoMoTuYu_ANS8EaFaj6aprlQkOEXTLzR65CmyZaRtjNpB_v3ZmyOqefmHDgP7_l4AThD8AZBUtwGrxcEc4QPwAmGGU0xwfhwrx6AUQhzGINiniF-DAaY5QhyjE7A3ZtWM9lYJZ1bJVJ1dik7XSXSd9ZYZaVLlHYuKVdJH2wzTWqrfGtcbyurwik4MtIFPdrmIfh8evwYv6ST9-fX8cMkVRRmXWo4kzlWyFAOpcowKRUreUlooRGVVFYqzxlniFSaUKQohZQpyjVRhhWkMmQI7je6i76sdaV003npxMLbWvqVaKUVvzuNnYlpuxQUIoY4jgKXWwHffvU6dKK2YX2YbHTbB4EKFD-IizyP6MUfdN72vonnRYpzmCMGaaSuNlT8RogWmN0yCIq1L2LnS2TP97ffkT8uROB6A4TYaqba7438p_YNrzyW-w</recordid><startdate>20160909</startdate><enddate>20160909</enddate><creator>Ho, Kenneth K. Y.</creator><creator>Lee, Lap Man</creator><creator>Liu, Allen P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160909</creationdate><title>Mechanically activated artificial cell by using microfluidics</title><author>Ho, Kenneth K. Y. ; Lee, Lap Man ; Liu, Allen P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-f97a62c1f590ac423bc7b9b358e15a5adc6679713de351c55057c59e3cf783df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>631/61/2049</topic><topic>639/166/985</topic><topic>Artificial Cells</topic><topic>Automation</topic><topic>Calcium influx</topic><topic>Compression</topic><topic>Emulsions</topic><topic>Engineering</topic><topic>Flow channels</topic><topic>Humanities and Social Sciences</topic><topic>Lab-On-A-Chip Devices</topic><topic>Lipids</topic><topic>Macromolecules</topic><topic>Mechanotransduction</topic><topic>Microfluidics</topic><topic>Microfluidics - methods</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Synthetic biology</topic><topic>Synthetic Biology - methods</topic><topic>Thinning</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ho, Kenneth K. Y.</creatorcontrib><creatorcontrib>Lee, Lap Man</creatorcontrib><creatorcontrib>Liu, Allen P.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ho, Kenneth K. Y.</au><au>Lee, Lap Man</au><au>Liu, Allen P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanically activated artificial cell by using microfluidics</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-09-09</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>32912</spage><epage>32912</epage><pages>32912-32912</pages><artnum>32912</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up
in vitro
reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27610921</pmid><doi>10.1038/srep32912</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-09, Vol.6 (1), p.32912-32912, Article 32912 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5017192 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 631/61/2049 639/166/985 Artificial Cells Automation Calcium influx Compression Emulsions Engineering Flow channels Humanities and Social Sciences Lab-On-A-Chip Devices Lipids Macromolecules Mechanotransduction Microfluidics Microfluidics - methods multidisciplinary Science Synthetic biology Synthetic Biology - methods Thinning Trapping |
title | Mechanically activated artificial cell by using microfluidics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A46%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanically%20activated%20artificial%20cell%20by%20using%20microfluidics&rft.jtitle=Scientific%20reports&rft.au=Ho,%20Kenneth%20K.%20Y.&rft.date=2016-09-09&rft.volume=6&rft.issue=1&rft.spage=32912&rft.epage=32912&rft.pages=32912-32912&rft.artnum=32912&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep32912&rft_dat=%3Cproquest_pubme%3E1819122866%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899061705&rft_id=info:pmid/27610921&rfr_iscdi=true |