Mechanically activated artificial cell by using microfluidics

All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2016-09, Vol.6 (1), p.32912-32912, Article 32912
Hauptverfasser: Ho, Kenneth K. Y., Lee, Lap Man, Liu, Allen P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32912
container_issue 1
container_start_page 32912
container_title Scientific reports
container_volume 6
creator Ho, Kenneth K. Y.
Lee, Lap Man
Liu, Allen P.
description All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology.
doi_str_mv 10.1038/srep32912
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5017192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1819122866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-f97a62c1f590ac423bc7b9b358e15a5adc6679713de351c55057c59e3cf783df3</originalsourceid><addsrcrecordid>eNplkV1LwzAUhoMoTuYu_ANS8EaFaj6aprlQkOEXTLzR65CmyZaRtjNpB_v3ZmyOqefmHDgP7_l4AThD8AZBUtwGrxcEc4QPwAmGGU0xwfhwrx6AUQhzGINiniF-DAaY5QhyjE7A3ZtWM9lYJZ1bJVJ1dik7XSXSd9ZYZaVLlHYuKVdJH2wzTWqrfGtcbyurwik4MtIFPdrmIfh8evwYv6ST9-fX8cMkVRRmXWo4kzlWyFAOpcowKRUreUlooRGVVFYqzxlniFSaUKQohZQpyjVRhhWkMmQI7je6i76sdaV003npxMLbWvqVaKUVvzuNnYlpuxQUIoY4jgKXWwHffvU6dKK2YX2YbHTbB4EKFD-IizyP6MUfdN72vonnRYpzmCMGaaSuNlT8RogWmN0yCIq1L2LnS2TP97ffkT8uROB6A4TYaqba7438p_YNrzyW-w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899061705</pqid></control><display><type>article</type><title>Mechanically activated artificial cell by using microfluidics</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ho, Kenneth K. Y. ; Lee, Lap Man ; Liu, Allen P.</creator><creatorcontrib>Ho, Kenneth K. Y. ; Lee, Lap Man ; Liu, Allen P.</creatorcontrib><description>All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep32912</identifier><identifier>PMID: 27610921</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/61/2049 ; 639/166/985 ; Artificial Cells ; Automation ; Calcium influx ; Compression ; Emulsions ; Engineering ; Flow channels ; Humanities and Social Sciences ; Lab-On-A-Chip Devices ; Lipids ; Macromolecules ; Mechanotransduction ; Microfluidics ; Microfluidics - methods ; multidisciplinary ; Science ; Synthetic biology ; Synthetic Biology - methods ; Thinning ; Trapping</subject><ispartof>Scientific reports, 2016-09, Vol.6 (1), p.32912-32912, Article 32912</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Sep 2016</rights><rights>Copyright © 2016, The Author(s) 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-f97a62c1f590ac423bc7b9b358e15a5adc6679713de351c55057c59e3cf783df3</citedby><cites>FETCH-LOGICAL-c504t-f97a62c1f590ac423bc7b9b358e15a5adc6679713de351c55057c59e3cf783df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5017192/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5017192/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27915,27916,41111,42180,51567,53782,53784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27610921$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ho, Kenneth K. Y.</creatorcontrib><creatorcontrib>Lee, Lap Man</creatorcontrib><creatorcontrib>Liu, Allen P.</creatorcontrib><title>Mechanically activated artificial cell by using microfluidics</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology.</description><subject>631/61/2049</subject><subject>639/166/985</subject><subject>Artificial Cells</subject><subject>Automation</subject><subject>Calcium influx</subject><subject>Compression</subject><subject>Emulsions</subject><subject>Engineering</subject><subject>Flow channels</subject><subject>Humanities and Social Sciences</subject><subject>Lab-On-A-Chip Devices</subject><subject>Lipids</subject><subject>Macromolecules</subject><subject>Mechanotransduction</subject><subject>Microfluidics</subject><subject>Microfluidics - methods</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Synthetic biology</subject><subject>Synthetic Biology - methods</subject><subject>Thinning</subject><subject>Trapping</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkV1LwzAUhoMoTuYu_ANS8EaFaj6aprlQkOEXTLzR65CmyZaRtjNpB_v3ZmyOqefmHDgP7_l4AThD8AZBUtwGrxcEc4QPwAmGGU0xwfhwrx6AUQhzGINiniF-DAaY5QhyjE7A3ZtWM9lYJZ1bJVJ1dik7XSXSd9ZYZaVLlHYuKVdJH2wzTWqrfGtcbyurwik4MtIFPdrmIfh8evwYv6ST9-fX8cMkVRRmXWo4kzlWyFAOpcowKRUreUlooRGVVFYqzxlniFSaUKQohZQpyjVRhhWkMmQI7je6i76sdaV003npxMLbWvqVaKUVvzuNnYlpuxQUIoY4jgKXWwHffvU6dKK2YX2YbHTbB4EKFD-IizyP6MUfdN72vonnRYpzmCMGaaSuNlT8RogWmN0yCIq1L2LnS2TP97ffkT8uROB6A4TYaqba7438p_YNrzyW-w</recordid><startdate>20160909</startdate><enddate>20160909</enddate><creator>Ho, Kenneth K. Y.</creator><creator>Lee, Lap Man</creator><creator>Liu, Allen P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160909</creationdate><title>Mechanically activated artificial cell by using microfluidics</title><author>Ho, Kenneth K. Y. ; Lee, Lap Man ; Liu, Allen P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-f97a62c1f590ac423bc7b9b358e15a5adc6679713de351c55057c59e3cf783df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>631/61/2049</topic><topic>639/166/985</topic><topic>Artificial Cells</topic><topic>Automation</topic><topic>Calcium influx</topic><topic>Compression</topic><topic>Emulsions</topic><topic>Engineering</topic><topic>Flow channels</topic><topic>Humanities and Social Sciences</topic><topic>Lab-On-A-Chip Devices</topic><topic>Lipids</topic><topic>Macromolecules</topic><topic>Mechanotransduction</topic><topic>Microfluidics</topic><topic>Microfluidics - methods</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Synthetic biology</topic><topic>Synthetic Biology - methods</topic><topic>Thinning</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ho, Kenneth K. Y.</creatorcontrib><creatorcontrib>Lee, Lap Man</creatorcontrib><creatorcontrib>Liu, Allen P.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ho, Kenneth K. Y.</au><au>Lee, Lap Man</au><au>Liu, Allen P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanically activated artificial cell by using microfluidics</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-09-09</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>32912</spage><epage>32912</epage><pages>32912-32912</pages><artnum>32912</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27610921</pmid><doi>10.1038/srep32912</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2016-09, Vol.6 (1), p.32912-32912, Article 32912
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5017192
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 631/61/2049
639/166/985
Artificial Cells
Automation
Calcium influx
Compression
Emulsions
Engineering
Flow channels
Humanities and Social Sciences
Lab-On-A-Chip Devices
Lipids
Macromolecules
Mechanotransduction
Microfluidics
Microfluidics - methods
multidisciplinary
Science
Synthetic biology
Synthetic Biology - methods
Thinning
Trapping
title Mechanically activated artificial cell by using microfluidics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A46%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanically%20activated%20artificial%20cell%20by%20using%20microfluidics&rft.jtitle=Scientific%20reports&rft.au=Ho,%20Kenneth%20K.%20Y.&rft.date=2016-09-09&rft.volume=6&rft.issue=1&rft.spage=32912&rft.epage=32912&rft.pages=32912-32912&rft.artnum=32912&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep32912&rft_dat=%3Cproquest_pubme%3E1819122866%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899061705&rft_id=info:pmid/27610921&rfr_iscdi=true