On the Quantitative Potential of Viscoelastic Response (VisR) Ultrasound Using the One-Dimensional Mass-Spring-Damper Model
Viscoelastic response (VisR) ultrasound is an acoustic radiation force (ARF)-based imaging method that fits induced displacements to a one-dimensional (1-D) mass-spring-damper (MSD) model to estimate the ratio of viscous to elastic moduli, τ, in viscoelastic materials. Error in VisR τ estimation ari...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2016-09, Vol.63 (9), p.1276-1287 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1287 |
---|---|
container_issue | 9 |
container_start_page | 1276 |
container_title | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
container_volume | 63 |
creator | Selzo, Mallory R. Moore, Christopher J. Hossain, Md. Murad Palmeri, Mark L. Gallippi, Caterina M. |
description | Viscoelastic response (VisR) ultrasound is an acoustic radiation force (ARF)-based imaging method that fits induced displacements to a one-dimensional (1-D) mass-spring-damper (MSD) model to estimate the ratio of viscous to elastic moduli, τ, in viscoelastic materials. Error in VisR τ estimation arises from inertia and acoustic displacement underestimation. These error sources are herein evaluated using finite-element method (FEM) simulations, error correction methods are developed, and corrected VisR τ estimates are compared with true simulated τ values to assess VisR's relevance to quantifying viscoelasticity. With regard to inertia, adding a mass term in series with the Voigt model, to achieve the MSD model, accounts for inertia due to tissue mass when ideal point force excitations are used. However, when volumetric ARF excitations are applied, the induced complex system inertia is not described by the single-degree-of-freedom MSD model, causing VisR to overestimate τ. Regarding acoustic displacement underestimation, associated deformation of ARF-induced displacement profiles further distorts VisR τ estimates. However, median error in VisR τ is reduced to approximately -10% using empirically derived error correction functions applied to simulated viscoelastic materials with viscous and elastic properties representative of tissue. The feasibility of corrected VisR imaging is then demonstrated in vivo in the rectus femoris muscle of an adult with no known neuromuscular disorders. These results suggest VisR's potential relevance to quantifying viscoelastic properties clinically. |
doi_str_mv | 10.1109/TUFFC.2016.2539323 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5016215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7428963</ieee_id><sourcerecordid>1823034834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-6ce3cfa79807fcb94d9b48f7b6e4c915a3e0c3da7f654fa481c2a8bcbb0756883</originalsourceid><addsrcrecordid>eNpdUU1v1DAUtBCILoU_ABKyxKUcsvgzsS-V0LYLSK0WSper5TgvravEXuKkUsWfx9tdVsDJep55o3kzCL2mZE4p0R-u18vlYs4ILedMcs0Zf4JmVDJZKC3lUzQjSsmCE0qO0IuU7gihQmj2HB2xiohSCTVDv1YBj7eAv002jH60o78H_DWOkCfb4djiHz65CJ1No3f4CtImhgT4JH9fvcfrbhxsilNo8Dr5cPOotQpQnPkeQvIxZJFLm1LxfTNkvDiz_QYGfBkb6F6iZ63tErzav8dovTy_XnwuLlafviw-XhRO0nIsSgfctbbSilStq7VodC1UW9UlCKeptByI442t2lKK1gpFHbOqdnVNKlkqxY_R6U53M9U9NC7fNtjOZEO9HR5MtN78iwR_a27ivZE5WkZlFjjZCwzx5wRpNH0OBbrOBohTMlQxTrhQXGTqu_-od3EacgpbFie61ERuHbEdyw0xpQHagxlKzLZb89it2XZr9t3mpbd_n3FY-VNmJrzZETwAHOBKMKVLzn8DfCWqyQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1830969058</pqid></control><display><type>article</type><title>On the Quantitative Potential of Viscoelastic Response (VisR) Ultrasound Using the One-Dimensional Mass-Spring-Damper Model</title><source>IEEE Xplore (Online service)</source><creator>Selzo, Mallory R. ; Moore, Christopher J. ; Hossain, Md. Murad ; Palmeri, Mark L. ; Gallippi, Caterina M.</creator><creatorcontrib>Selzo, Mallory R. ; Moore, Christopher J. ; Hossain, Md. Murad ; Palmeri, Mark L. ; Gallippi, Caterina M.</creatorcontrib><description>Viscoelastic response (VisR) ultrasound is an acoustic radiation force (ARF)-based imaging method that fits induced displacements to a one-dimensional (1-D) mass-spring-damper (MSD) model to estimate the ratio of viscous to elastic moduli, τ, in viscoelastic materials. Error in VisR τ estimation arises from inertia and acoustic displacement underestimation. These error sources are herein evaluated using finite-element method (FEM) simulations, error correction methods are developed, and corrected VisR τ estimates are compared with true simulated τ values to assess VisR's relevance to quantifying viscoelasticity. With regard to inertia, adding a mass term in series with the Voigt model, to achieve the MSD model, accounts for inertia due to tissue mass when ideal point force excitations are used. However, when volumetric ARF excitations are applied, the induced complex system inertia is not described by the single-degree-of-freedom MSD model, causing VisR to overestimate τ. Regarding acoustic displacement underestimation, associated deformation of ARF-induced displacement profiles further distorts VisR τ estimates. However, median error in VisR τ is reduced to approximately -10% using empirically derived error correction functions applied to simulated viscoelastic materials with viscous and elastic properties representative of tissue. The feasibility of corrected VisR imaging is then demonstrated in vivo in the rectus femoris muscle of an adult with no known neuromuscular disorders. These results suggest VisR's potential relevance to quantifying viscoelastic properties clinically.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2016.2539323</identifier><identifier>PMID: 27046848</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acoustic radiation force (ARF) ; Acoustics ; Computational modeling ; Elastic Modulus ; Error correction & detection ; Finite element analysis ; Force ; Humans ; Imaging ; mass spring damper (MSD) ; Mathematical model ; Mechanical Phenomena ; Ultrasonic imaging ; Ultrasonography ; viscoelastic response (VisR) ultrasound ; Viscoelasticity ; Viscosity</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2016-09, Vol.63 (9), p.1276-1287</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-6ce3cfa79807fcb94d9b48f7b6e4c915a3e0c3da7f654fa481c2a8bcbb0756883</citedby><cites>FETCH-LOGICAL-c516t-6ce3cfa79807fcb94d9b48f7b6e4c915a3e0c3da7f654fa481c2a8bcbb0756883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7428963$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,315,781,785,797,886,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7428963$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27046848$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Selzo, Mallory R.</creatorcontrib><creatorcontrib>Moore, Christopher J.</creatorcontrib><creatorcontrib>Hossain, Md. Murad</creatorcontrib><creatorcontrib>Palmeri, Mark L.</creatorcontrib><creatorcontrib>Gallippi, Caterina M.</creatorcontrib><title>On the Quantitative Potential of Viscoelastic Response (VisR) Ultrasound Using the One-Dimensional Mass-Spring-Damper Model</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>Viscoelastic response (VisR) ultrasound is an acoustic radiation force (ARF)-based imaging method that fits induced displacements to a one-dimensional (1-D) mass-spring-damper (MSD) model to estimate the ratio of viscous to elastic moduli, τ, in viscoelastic materials. Error in VisR τ estimation arises from inertia and acoustic displacement underestimation. These error sources are herein evaluated using finite-element method (FEM) simulations, error correction methods are developed, and corrected VisR τ estimates are compared with true simulated τ values to assess VisR's relevance to quantifying viscoelasticity. With regard to inertia, adding a mass term in series with the Voigt model, to achieve the MSD model, accounts for inertia due to tissue mass when ideal point force excitations are used. However, when volumetric ARF excitations are applied, the induced complex system inertia is not described by the single-degree-of-freedom MSD model, causing VisR to overestimate τ. Regarding acoustic displacement underestimation, associated deformation of ARF-induced displacement profiles further distorts VisR τ estimates. However, median error in VisR τ is reduced to approximately -10% using empirically derived error correction functions applied to simulated viscoelastic materials with viscous and elastic properties representative of tissue. The feasibility of corrected VisR imaging is then demonstrated in vivo in the rectus femoris muscle of an adult with no known neuromuscular disorders. These results suggest VisR's potential relevance to quantifying viscoelastic properties clinically.</description><subject>Acoustic radiation force (ARF)</subject><subject>Acoustics</subject><subject>Computational modeling</subject><subject>Elastic Modulus</subject><subject>Error correction & detection</subject><subject>Finite element analysis</subject><subject>Force</subject><subject>Humans</subject><subject>Imaging</subject><subject>mass spring damper (MSD)</subject><subject>Mathematical model</subject><subject>Mechanical Phenomena</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography</subject><subject>viscoelastic response (VisR) ultrasound</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdUU1v1DAUtBCILoU_ABKyxKUcsvgzsS-V0LYLSK0WSper5TgvravEXuKkUsWfx9tdVsDJep55o3kzCL2mZE4p0R-u18vlYs4ILedMcs0Zf4JmVDJZKC3lUzQjSsmCE0qO0IuU7gihQmj2HB2xiohSCTVDv1YBj7eAv002jH60o78H_DWOkCfb4djiHz65CJ1No3f4CtImhgT4JH9fvcfrbhxsilNo8Dr5cPOotQpQnPkeQvIxZJFLm1LxfTNkvDiz_QYGfBkb6F6iZ63tErzav8dovTy_XnwuLlafviw-XhRO0nIsSgfctbbSilStq7VodC1UW9UlCKeptByI442t2lKK1gpFHbOqdnVNKlkqxY_R6U53M9U9NC7fNtjOZEO9HR5MtN78iwR_a27ivZE5WkZlFjjZCwzx5wRpNH0OBbrOBohTMlQxTrhQXGTqu_-od3EacgpbFie61ERuHbEdyw0xpQHagxlKzLZb89it2XZr9t3mpbd_n3FY-VNmJrzZETwAHOBKMKVLzn8DfCWqyQ</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Selzo, Mallory R.</creator><creator>Moore, Christopher J.</creator><creator>Hossain, Md. Murad</creator><creator>Palmeri, Mark L.</creator><creator>Gallippi, Caterina M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160901</creationdate><title>On the Quantitative Potential of Viscoelastic Response (VisR) Ultrasound Using the One-Dimensional Mass-Spring-Damper Model</title><author>Selzo, Mallory R. ; Moore, Christopher J. ; Hossain, Md. Murad ; Palmeri, Mark L. ; Gallippi, Caterina M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-6ce3cfa79807fcb94d9b48f7b6e4c915a3e0c3da7f654fa481c2a8bcbb0756883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acoustic radiation force (ARF)</topic><topic>Acoustics</topic><topic>Computational modeling</topic><topic>Elastic Modulus</topic><topic>Error correction & detection</topic><topic>Finite element analysis</topic><topic>Force</topic><topic>Humans</topic><topic>Imaging</topic><topic>mass spring damper (MSD)</topic><topic>Mathematical model</topic><topic>Mechanical Phenomena</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography</topic><topic>viscoelastic response (VisR) ultrasound</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Selzo, Mallory R.</creatorcontrib><creatorcontrib>Moore, Christopher J.</creatorcontrib><creatorcontrib>Hossain, Md. Murad</creatorcontrib><creatorcontrib>Palmeri, Mark L.</creatorcontrib><creatorcontrib>Gallippi, Caterina M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Selzo, Mallory R.</au><au>Moore, Christopher J.</au><au>Hossain, Md. Murad</au><au>Palmeri, Mark L.</au><au>Gallippi, Caterina M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Quantitative Potential of Viscoelastic Response (VisR) Ultrasound Using the One-Dimensional Mass-Spring-Damper Model</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2016-09-01</date><risdate>2016</risdate><volume>63</volume><issue>9</issue><spage>1276</spage><epage>1287</epage><pages>1276-1287</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>Viscoelastic response (VisR) ultrasound is an acoustic radiation force (ARF)-based imaging method that fits induced displacements to a one-dimensional (1-D) mass-spring-damper (MSD) model to estimate the ratio of viscous to elastic moduli, τ, in viscoelastic materials. Error in VisR τ estimation arises from inertia and acoustic displacement underestimation. These error sources are herein evaluated using finite-element method (FEM) simulations, error correction methods are developed, and corrected VisR τ estimates are compared with true simulated τ values to assess VisR's relevance to quantifying viscoelasticity. With regard to inertia, adding a mass term in series with the Voigt model, to achieve the MSD model, accounts for inertia due to tissue mass when ideal point force excitations are used. However, when volumetric ARF excitations are applied, the induced complex system inertia is not described by the single-degree-of-freedom MSD model, causing VisR to overestimate τ. Regarding acoustic displacement underestimation, associated deformation of ARF-induced displacement profiles further distorts VisR τ estimates. However, median error in VisR τ is reduced to approximately -10% using empirically derived error correction functions applied to simulated viscoelastic materials with viscous and elastic properties representative of tissue. The feasibility of corrected VisR imaging is then demonstrated in vivo in the rectus femoris muscle of an adult with no known neuromuscular disorders. These results suggest VisR's potential relevance to quantifying viscoelastic properties clinically.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27046848</pmid><doi>10.1109/TUFFC.2016.2539323</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-3010 |
ispartof | IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2016-09, Vol.63 (9), p.1276-1287 |
issn | 0885-3010 1525-8955 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5016215 |
source | IEEE Xplore (Online service) |
subjects | Acoustic radiation force (ARF) Acoustics Computational modeling Elastic Modulus Error correction & detection Finite element analysis Force Humans Imaging mass spring damper (MSD) Mathematical model Mechanical Phenomena Ultrasonic imaging Ultrasonography viscoelastic response (VisR) ultrasound Viscoelasticity Viscosity |
title | On the Quantitative Potential of Viscoelastic Response (VisR) Ultrasound Using the One-Dimensional Mass-Spring-Damper Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T17%3A05%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Quantitative%20Potential%20of%20Viscoelastic%20Response%20(VisR)%20Ultrasound%20Using%20the%20One-Dimensional%20Mass-Spring-Damper%20Model&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Selzo,%20Mallory%20R.&rft.date=2016-09-01&rft.volume=63&rft.issue=9&rft.spage=1276&rft.epage=1287&rft.pages=1276-1287&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2016.2539323&rft_dat=%3Cproquest_RIE%3E1823034834%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1830969058&rft_id=info:pmid/27046848&rft_ieee_id=7428963&rfr_iscdi=true |