On the Quantitative Potential of Viscoelastic Response (VisR) Ultrasound Using the One-Dimensional Mass-Spring-Damper Model

Viscoelastic response (VisR) ultrasound is an acoustic radiation force (ARF)-based imaging method that fits induced displacements to a one-dimensional (1-D) mass-spring-damper (MSD) model to estimate the ratio of viscous to elastic moduli, τ, in viscoelastic materials. Error in VisR τ estimation ari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2016-09, Vol.63 (9), p.1276-1287
Hauptverfasser: Selzo, Mallory R., Moore, Christopher J., Hossain, Md. Murad, Palmeri, Mark L., Gallippi, Caterina M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1287
container_issue 9
container_start_page 1276
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 63
creator Selzo, Mallory R.
Moore, Christopher J.
Hossain, Md. Murad
Palmeri, Mark L.
Gallippi, Caterina M.
description Viscoelastic response (VisR) ultrasound is an acoustic radiation force (ARF)-based imaging method that fits induced displacements to a one-dimensional (1-D) mass-spring-damper (MSD) model to estimate the ratio of viscous to elastic moduli, τ, in viscoelastic materials. Error in VisR τ estimation arises from inertia and acoustic displacement underestimation. These error sources are herein evaluated using finite-element method (FEM) simulations, error correction methods are developed, and corrected VisR τ estimates are compared with true simulated τ values to assess VisR's relevance to quantifying viscoelasticity. With regard to inertia, adding a mass term in series with the Voigt model, to achieve the MSD model, accounts for inertia due to tissue mass when ideal point force excitations are used. However, when volumetric ARF excitations are applied, the induced complex system inertia is not described by the single-degree-of-freedom MSD model, causing VisR to overestimate τ. Regarding acoustic displacement underestimation, associated deformation of ARF-induced displacement profiles further distorts VisR τ estimates. However, median error in VisR τ is reduced to approximately -10% using empirically derived error correction functions applied to simulated viscoelastic materials with viscous and elastic properties representative of tissue. The feasibility of corrected VisR imaging is then demonstrated in vivo in the rectus femoris muscle of an adult with no known neuromuscular disorders. These results suggest VisR's potential relevance to quantifying viscoelastic properties clinically.
doi_str_mv 10.1109/TUFFC.2016.2539323
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5016215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7428963</ieee_id><sourcerecordid>1823034834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-6ce3cfa79807fcb94d9b48f7b6e4c915a3e0c3da7f654fa481c2a8bcbb0756883</originalsourceid><addsrcrecordid>eNpdUU1v1DAUtBCILoU_ABKyxKUcsvgzsS-V0LYLSK0WSper5TgvravEXuKkUsWfx9tdVsDJep55o3kzCL2mZE4p0R-u18vlYs4ILedMcs0Zf4JmVDJZKC3lUzQjSsmCE0qO0IuU7gihQmj2HB2xiohSCTVDv1YBj7eAv002jH60o78H_DWOkCfb4djiHz65CJ1No3f4CtImhgT4JH9fvcfrbhxsilNo8Dr5cPOotQpQnPkeQvIxZJFLm1LxfTNkvDiz_QYGfBkb6F6iZ63tErzav8dovTy_XnwuLlafviw-XhRO0nIsSgfctbbSilStq7VodC1UW9UlCKeptByI442t2lKK1gpFHbOqdnVNKlkqxY_R6U53M9U9NC7fNtjOZEO9HR5MtN78iwR_a27ivZE5WkZlFjjZCwzx5wRpNH0OBbrOBohTMlQxTrhQXGTqu_-od3EacgpbFie61ERuHbEdyw0xpQHagxlKzLZb89it2XZr9t3mpbd_n3FY-VNmJrzZETwAHOBKMKVLzn8DfCWqyQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1830969058</pqid></control><display><type>article</type><title>On the Quantitative Potential of Viscoelastic Response (VisR) Ultrasound Using the One-Dimensional Mass-Spring-Damper Model</title><source>IEEE Xplore (Online service)</source><creator>Selzo, Mallory R. ; Moore, Christopher J. ; Hossain, Md. Murad ; Palmeri, Mark L. ; Gallippi, Caterina M.</creator><creatorcontrib>Selzo, Mallory R. ; Moore, Christopher J. ; Hossain, Md. Murad ; Palmeri, Mark L. ; Gallippi, Caterina M.</creatorcontrib><description>Viscoelastic response (VisR) ultrasound is an acoustic radiation force (ARF)-based imaging method that fits induced displacements to a one-dimensional (1-D) mass-spring-damper (MSD) model to estimate the ratio of viscous to elastic moduli, τ, in viscoelastic materials. Error in VisR τ estimation arises from inertia and acoustic displacement underestimation. These error sources are herein evaluated using finite-element method (FEM) simulations, error correction methods are developed, and corrected VisR τ estimates are compared with true simulated τ values to assess VisR's relevance to quantifying viscoelasticity. With regard to inertia, adding a mass term in series with the Voigt model, to achieve the MSD model, accounts for inertia due to tissue mass when ideal point force excitations are used. However, when volumetric ARF excitations are applied, the induced complex system inertia is not described by the single-degree-of-freedom MSD model, causing VisR to overestimate τ. Regarding acoustic displacement underestimation, associated deformation of ARF-induced displacement profiles further distorts VisR τ estimates. However, median error in VisR τ is reduced to approximately -10% using empirically derived error correction functions applied to simulated viscoelastic materials with viscous and elastic properties representative of tissue. The feasibility of corrected VisR imaging is then demonstrated in vivo in the rectus femoris muscle of an adult with no known neuromuscular disorders. These results suggest VisR's potential relevance to quantifying viscoelastic properties clinically.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2016.2539323</identifier><identifier>PMID: 27046848</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acoustic radiation force (ARF) ; Acoustics ; Computational modeling ; Elastic Modulus ; Error correction &amp; detection ; Finite element analysis ; Force ; Humans ; Imaging ; mass spring damper (MSD) ; Mathematical model ; Mechanical Phenomena ; Ultrasonic imaging ; Ultrasonography ; viscoelastic response (VisR) ultrasound ; Viscoelasticity ; Viscosity</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2016-09, Vol.63 (9), p.1276-1287</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-6ce3cfa79807fcb94d9b48f7b6e4c915a3e0c3da7f654fa481c2a8bcbb0756883</citedby><cites>FETCH-LOGICAL-c516t-6ce3cfa79807fcb94d9b48f7b6e4c915a3e0c3da7f654fa481c2a8bcbb0756883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7428963$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,315,781,785,797,886,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7428963$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27046848$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Selzo, Mallory R.</creatorcontrib><creatorcontrib>Moore, Christopher J.</creatorcontrib><creatorcontrib>Hossain, Md. Murad</creatorcontrib><creatorcontrib>Palmeri, Mark L.</creatorcontrib><creatorcontrib>Gallippi, Caterina M.</creatorcontrib><title>On the Quantitative Potential of Viscoelastic Response (VisR) Ultrasound Using the One-Dimensional Mass-Spring-Damper Model</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>Viscoelastic response (VisR) ultrasound is an acoustic radiation force (ARF)-based imaging method that fits induced displacements to a one-dimensional (1-D) mass-spring-damper (MSD) model to estimate the ratio of viscous to elastic moduli, τ, in viscoelastic materials. Error in VisR τ estimation arises from inertia and acoustic displacement underestimation. These error sources are herein evaluated using finite-element method (FEM) simulations, error correction methods are developed, and corrected VisR τ estimates are compared with true simulated τ values to assess VisR's relevance to quantifying viscoelasticity. With regard to inertia, adding a mass term in series with the Voigt model, to achieve the MSD model, accounts for inertia due to tissue mass when ideal point force excitations are used. However, when volumetric ARF excitations are applied, the induced complex system inertia is not described by the single-degree-of-freedom MSD model, causing VisR to overestimate τ. Regarding acoustic displacement underestimation, associated deformation of ARF-induced displacement profiles further distorts VisR τ estimates. However, median error in VisR τ is reduced to approximately -10% using empirically derived error correction functions applied to simulated viscoelastic materials with viscous and elastic properties representative of tissue. The feasibility of corrected VisR imaging is then demonstrated in vivo in the rectus femoris muscle of an adult with no known neuromuscular disorders. These results suggest VisR's potential relevance to quantifying viscoelastic properties clinically.</description><subject>Acoustic radiation force (ARF)</subject><subject>Acoustics</subject><subject>Computational modeling</subject><subject>Elastic Modulus</subject><subject>Error correction &amp; detection</subject><subject>Finite element analysis</subject><subject>Force</subject><subject>Humans</subject><subject>Imaging</subject><subject>mass spring damper (MSD)</subject><subject>Mathematical model</subject><subject>Mechanical Phenomena</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography</subject><subject>viscoelastic response (VisR) ultrasound</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdUU1v1DAUtBCILoU_ABKyxKUcsvgzsS-V0LYLSK0WSper5TgvravEXuKkUsWfx9tdVsDJep55o3kzCL2mZE4p0R-u18vlYs4ILedMcs0Zf4JmVDJZKC3lUzQjSsmCE0qO0IuU7gihQmj2HB2xiohSCTVDv1YBj7eAv002jH60o78H_DWOkCfb4djiHz65CJ1No3f4CtImhgT4JH9fvcfrbhxsilNo8Dr5cPOotQpQnPkeQvIxZJFLm1LxfTNkvDiz_QYGfBkb6F6iZ63tErzav8dovTy_XnwuLlafviw-XhRO0nIsSgfctbbSilStq7VodC1UW9UlCKeptByI442t2lKK1gpFHbOqdnVNKlkqxY_R6U53M9U9NC7fNtjOZEO9HR5MtN78iwR_a27ivZE5WkZlFjjZCwzx5wRpNH0OBbrOBohTMlQxTrhQXGTqu_-od3EacgpbFie61ERuHbEdyw0xpQHagxlKzLZb89it2XZr9t3mpbd_n3FY-VNmJrzZETwAHOBKMKVLzn8DfCWqyQ</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Selzo, Mallory R.</creator><creator>Moore, Christopher J.</creator><creator>Hossain, Md. Murad</creator><creator>Palmeri, Mark L.</creator><creator>Gallippi, Caterina M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160901</creationdate><title>On the Quantitative Potential of Viscoelastic Response (VisR) Ultrasound Using the One-Dimensional Mass-Spring-Damper Model</title><author>Selzo, Mallory R. ; Moore, Christopher J. ; Hossain, Md. Murad ; Palmeri, Mark L. ; Gallippi, Caterina M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-6ce3cfa79807fcb94d9b48f7b6e4c915a3e0c3da7f654fa481c2a8bcbb0756883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acoustic radiation force (ARF)</topic><topic>Acoustics</topic><topic>Computational modeling</topic><topic>Elastic Modulus</topic><topic>Error correction &amp; detection</topic><topic>Finite element analysis</topic><topic>Force</topic><topic>Humans</topic><topic>Imaging</topic><topic>mass spring damper (MSD)</topic><topic>Mathematical model</topic><topic>Mechanical Phenomena</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography</topic><topic>viscoelastic response (VisR) ultrasound</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Selzo, Mallory R.</creatorcontrib><creatorcontrib>Moore, Christopher J.</creatorcontrib><creatorcontrib>Hossain, Md. Murad</creatorcontrib><creatorcontrib>Palmeri, Mark L.</creatorcontrib><creatorcontrib>Gallippi, Caterina M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Selzo, Mallory R.</au><au>Moore, Christopher J.</au><au>Hossain, Md. Murad</au><au>Palmeri, Mark L.</au><au>Gallippi, Caterina M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Quantitative Potential of Viscoelastic Response (VisR) Ultrasound Using the One-Dimensional Mass-Spring-Damper Model</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2016-09-01</date><risdate>2016</risdate><volume>63</volume><issue>9</issue><spage>1276</spage><epage>1287</epage><pages>1276-1287</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>Viscoelastic response (VisR) ultrasound is an acoustic radiation force (ARF)-based imaging method that fits induced displacements to a one-dimensional (1-D) mass-spring-damper (MSD) model to estimate the ratio of viscous to elastic moduli, τ, in viscoelastic materials. Error in VisR τ estimation arises from inertia and acoustic displacement underestimation. These error sources are herein evaluated using finite-element method (FEM) simulations, error correction methods are developed, and corrected VisR τ estimates are compared with true simulated τ values to assess VisR's relevance to quantifying viscoelasticity. With regard to inertia, adding a mass term in series with the Voigt model, to achieve the MSD model, accounts for inertia due to tissue mass when ideal point force excitations are used. However, when volumetric ARF excitations are applied, the induced complex system inertia is not described by the single-degree-of-freedom MSD model, causing VisR to overestimate τ. Regarding acoustic displacement underestimation, associated deformation of ARF-induced displacement profiles further distorts VisR τ estimates. However, median error in VisR τ is reduced to approximately -10% using empirically derived error correction functions applied to simulated viscoelastic materials with viscous and elastic properties representative of tissue. The feasibility of corrected VisR imaging is then demonstrated in vivo in the rectus femoris muscle of an adult with no known neuromuscular disorders. These results suggest VisR's potential relevance to quantifying viscoelastic properties clinically.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27046848</pmid><doi>10.1109/TUFFC.2016.2539323</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2016-09, Vol.63 (9), p.1276-1287
issn 0885-3010
1525-8955
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5016215
source IEEE Xplore (Online service)
subjects Acoustic radiation force (ARF)
Acoustics
Computational modeling
Elastic Modulus
Error correction & detection
Finite element analysis
Force
Humans
Imaging
mass spring damper (MSD)
Mathematical model
Mechanical Phenomena
Ultrasonic imaging
Ultrasonography
viscoelastic response (VisR) ultrasound
Viscoelasticity
Viscosity
title On the Quantitative Potential of Viscoelastic Response (VisR) Ultrasound Using the One-Dimensional Mass-Spring-Damper Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T17%3A05%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Quantitative%20Potential%20of%20Viscoelastic%20Response%20(VisR)%20Ultrasound%20Using%20the%20One-Dimensional%20Mass-Spring-Damper%20Model&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Selzo,%20Mallory%20R.&rft.date=2016-09-01&rft.volume=63&rft.issue=9&rft.spage=1276&rft.epage=1287&rft.pages=1276-1287&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2016.2539323&rft_dat=%3Cproquest_RIE%3E1823034834%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1830969058&rft_id=info:pmid/27046848&rft_ieee_id=7428963&rfr_iscdi=true