Clustering drug-drug interaction networks with energy model layouts: community analysis and drug repurposing
Analyzing drug-drug interactions may unravel previously unknown drug action patterns, leading to the development of new drug discovery tools. We present a new approach to analyzing drug-drug interaction networks, based on clustering and topological community detection techniques that are specific to...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2016-09, Vol.6 (1), p.32745, Article 32745 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 32745 |
container_title | Scientific reports |
container_volume | 6 |
creator | Udrescu, Lucreţia Sbârcea, Laura Topîrceanu, Alexandru Iovanovici, Alexandru Kurunczi, Ludovic Bogdan, Paul Udrescu, Mihai |
description | Analyzing drug-drug interactions may unravel previously unknown drug action patterns, leading to the development of new drug discovery tools. We present a new approach to analyzing drug-drug interaction networks, based on clustering and topological community detection techniques that are specific to complex network science. Our methodology uncovers functional drug categories along with the intricate relationships between them. Using modularity-based and energy-model layout community detection algorithms, we link the network clusters to 9 relevant pharmacological properties. Out of the 1141 drugs from the DrugBank 4.1 database, our extensive literature survey and cross-checking with other databases such as Drugs.com, RxList, and DrugBank 4.3 confirm the predicted properties for 85% of the drugs. As such, we argue that network analysis offers a high-level grasp on a wide area of pharmacological aspects, indicating possible unaccounted interactions and missing pharmacological properties that can lead to drug repositioning for the 15% drugs which seem to be inconsistent with the predicted property. Also, by using network centralities, we can rank drugs according to their interaction potential for both simple and complex multi-pathology therapies. Moreover, our clustering approach can be extended for applications such as analyzing drug-target interactions or phenotyping patients in personalized medicine applications. |
doi_str_mv | 10.1038/srep32745 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5013446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899069951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-2401b05c84b561a42c0ffe2f13e9f328bec7863891fb1a8398b53b023d8392523</originalsourceid><addsrcrecordid>eNplkV1LBCEYhSWKiuqiPxBCVwVTfu5qF0EsfUHQTV2LM-Ns1oxO6hTz73PbWjbyQg_6cM4rB4BDjM4wouI8BtNTMmV8A-wSxHhBKCGba3oHHMT4ivLiRDIst8EOmXIppwTtgnbWDjGZYN0c1mGYF4sNWpevdJWsd9CZ9OnDW4SfNr1A40yYj7DztWlhq0c_pHgBK991g7NphNrpdow2ZlF_G8I83hB6H3PCPthqdBvNwc-5B55vrp9md8XD4-397OqhqBgVqSAM4RLxSrCST7BmpEJNY0iDqZENJaI01VRMqJC4KbEWVIqS0xIRWmdNOKF74HLp2w9lZ-rKuBR0q_pgOx1G5bVVf1-cfVFz_6E4wpSxSTY4_jEI_n0wMalXP4T8taiwkBJNpOQ4UydLqgo-5hqaVQJGatGNWnWT2aP1kVbkbxMZOF0CsV-UYcJa5D-3LxVSm0E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899069951</pqid></control><display><type>article</type><title>Clustering drug-drug interaction networks with energy model layouts: community analysis and drug repurposing</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Udrescu, Lucreţia ; Sbârcea, Laura ; Topîrceanu, Alexandru ; Iovanovici, Alexandru ; Kurunczi, Ludovic ; Bogdan, Paul ; Udrescu, Mihai</creator><creatorcontrib>Udrescu, Lucreţia ; Sbârcea, Laura ; Topîrceanu, Alexandru ; Iovanovici, Alexandru ; Kurunczi, Ludovic ; Bogdan, Paul ; Udrescu, Mihai</creatorcontrib><description>Analyzing drug-drug interactions may unravel previously unknown drug action patterns, leading to the development of new drug discovery tools. We present a new approach to analyzing drug-drug interaction networks, based on clustering and topological community detection techniques that are specific to complex network science. Our methodology uncovers functional drug categories along with the intricate relationships between them. Using modularity-based and energy-model layout community detection algorithms, we link the network clusters to 9 relevant pharmacological properties. Out of the 1141 drugs from the DrugBank 4.1 database, our extensive literature survey and cross-checking with other databases such as Drugs.com, RxList, and DrugBank 4.3 confirm the predicted properties for 85% of the drugs. As such, we argue that network analysis offers a high-level grasp on a wide area of pharmacological aspects, indicating possible unaccounted interactions and missing pharmacological properties that can lead to drug repositioning for the 15% drugs which seem to be inconsistent with the predicted property. Also, by using network centralities, we can rank drugs according to their interaction potential for both simple and complex multi-pathology therapies. Moreover, our clustering approach can be extended for applications such as analyzing drug-target interactions or phenotyping patients in personalized medicine applications.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep32745</identifier><identifier>PMID: 27599720</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/154/436 ; 631/92/360 ; Algorithms ; Cluster Analysis ; Computational Biology - methods ; Databases, Factual ; Drug discovery ; Drug interaction ; Drug Interactions ; Drug Repositioning ; Drugs ; Energy ; Humanities and Social Sciences ; Humans ; multidisciplinary ; Phenotyping ; Precision Medicine ; Science</subject><ispartof>Scientific reports, 2016-09, Vol.6 (1), p.32745, Article 32745</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Sep 2016</rights><rights>Copyright © 2016, The Author(s) 2016 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-2401b05c84b561a42c0ffe2f13e9f328bec7863891fb1a8398b53b023d8392523</citedby><cites>FETCH-LOGICAL-c438t-2401b05c84b561a42c0ffe2f13e9f328bec7863891fb1a8398b53b023d8392523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013446/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013446/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27599720$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Udrescu, Lucreţia</creatorcontrib><creatorcontrib>Sbârcea, Laura</creatorcontrib><creatorcontrib>Topîrceanu, Alexandru</creatorcontrib><creatorcontrib>Iovanovici, Alexandru</creatorcontrib><creatorcontrib>Kurunczi, Ludovic</creatorcontrib><creatorcontrib>Bogdan, Paul</creatorcontrib><creatorcontrib>Udrescu, Mihai</creatorcontrib><title>Clustering drug-drug interaction networks with energy model layouts: community analysis and drug repurposing</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Analyzing drug-drug interactions may unravel previously unknown drug action patterns, leading to the development of new drug discovery tools. We present a new approach to analyzing drug-drug interaction networks, based on clustering and topological community detection techniques that are specific to complex network science. Our methodology uncovers functional drug categories along with the intricate relationships between them. Using modularity-based and energy-model layout community detection algorithms, we link the network clusters to 9 relevant pharmacological properties. Out of the 1141 drugs from the DrugBank 4.1 database, our extensive literature survey and cross-checking with other databases such as Drugs.com, RxList, and DrugBank 4.3 confirm the predicted properties for 85% of the drugs. As such, we argue that network analysis offers a high-level grasp on a wide area of pharmacological aspects, indicating possible unaccounted interactions and missing pharmacological properties that can lead to drug repositioning for the 15% drugs which seem to be inconsistent with the predicted property. Also, by using network centralities, we can rank drugs according to their interaction potential for both simple and complex multi-pathology therapies. Moreover, our clustering approach can be extended for applications such as analyzing drug-target interactions or phenotyping patients in personalized medicine applications.</description><subject>631/154/436</subject><subject>631/92/360</subject><subject>Algorithms</subject><subject>Cluster Analysis</subject><subject>Computational Biology - methods</subject><subject>Databases, Factual</subject><subject>Drug discovery</subject><subject>Drug interaction</subject><subject>Drug Interactions</subject><subject>Drug Repositioning</subject><subject>Drugs</subject><subject>Energy</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>multidisciplinary</subject><subject>Phenotyping</subject><subject>Precision Medicine</subject><subject>Science</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkV1LBCEYhSWKiuqiPxBCVwVTfu5qF0EsfUHQTV2LM-Ns1oxO6hTz73PbWjbyQg_6cM4rB4BDjM4wouI8BtNTMmV8A-wSxHhBKCGba3oHHMT4ivLiRDIst8EOmXIppwTtgnbWDjGZYN0c1mGYF4sNWpevdJWsd9CZ9OnDW4SfNr1A40yYj7DztWlhq0c_pHgBK991g7NphNrpdow2ZlF_G8I83hB6H3PCPthqdBvNwc-5B55vrp9md8XD4-397OqhqBgVqSAM4RLxSrCST7BmpEJNY0iDqZENJaI01VRMqJC4KbEWVIqS0xIRWmdNOKF74HLp2w9lZ-rKuBR0q_pgOx1G5bVVf1-cfVFz_6E4wpSxSTY4_jEI_n0wMalXP4T8taiwkBJNpOQ4UydLqgo-5hqaVQJGatGNWnWT2aP1kVbkbxMZOF0CsV-UYcJa5D-3LxVSm0E</recordid><startdate>20160907</startdate><enddate>20160907</enddate><creator>Udrescu, Lucreţia</creator><creator>Sbârcea, Laura</creator><creator>Topîrceanu, Alexandru</creator><creator>Iovanovici, Alexandru</creator><creator>Kurunczi, Ludovic</creator><creator>Bogdan, Paul</creator><creator>Udrescu, Mihai</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope></search><sort><creationdate>20160907</creationdate><title>Clustering drug-drug interaction networks with energy model layouts: community analysis and drug repurposing</title><author>Udrescu, Lucreţia ; Sbârcea, Laura ; Topîrceanu, Alexandru ; Iovanovici, Alexandru ; Kurunczi, Ludovic ; Bogdan, Paul ; Udrescu, Mihai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-2401b05c84b561a42c0ffe2f13e9f328bec7863891fb1a8398b53b023d8392523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>631/154/436</topic><topic>631/92/360</topic><topic>Algorithms</topic><topic>Cluster Analysis</topic><topic>Computational Biology - methods</topic><topic>Databases, Factual</topic><topic>Drug discovery</topic><topic>Drug interaction</topic><topic>Drug Interactions</topic><topic>Drug Repositioning</topic><topic>Drugs</topic><topic>Energy</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>multidisciplinary</topic><topic>Phenotyping</topic><topic>Precision Medicine</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Udrescu, Lucreţia</creatorcontrib><creatorcontrib>Sbârcea, Laura</creatorcontrib><creatorcontrib>Topîrceanu, Alexandru</creatorcontrib><creatorcontrib>Iovanovici, Alexandru</creatorcontrib><creatorcontrib>Kurunczi, Ludovic</creatorcontrib><creatorcontrib>Bogdan, Paul</creatorcontrib><creatorcontrib>Udrescu, Mihai</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Udrescu, Lucreţia</au><au>Sbârcea, Laura</au><au>Topîrceanu, Alexandru</au><au>Iovanovici, Alexandru</au><au>Kurunczi, Ludovic</au><au>Bogdan, Paul</au><au>Udrescu, Mihai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clustering drug-drug interaction networks with energy model layouts: community analysis and drug repurposing</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2016-09-07</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>32745</spage><pages>32745-</pages><artnum>32745</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Analyzing drug-drug interactions may unravel previously unknown drug action patterns, leading to the development of new drug discovery tools. We present a new approach to analyzing drug-drug interaction networks, based on clustering and topological community detection techniques that are specific to complex network science. Our methodology uncovers functional drug categories along with the intricate relationships between them. Using modularity-based and energy-model layout community detection algorithms, we link the network clusters to 9 relevant pharmacological properties. Out of the 1141 drugs from the DrugBank 4.1 database, our extensive literature survey and cross-checking with other databases such as Drugs.com, RxList, and DrugBank 4.3 confirm the predicted properties for 85% of the drugs. As such, we argue that network analysis offers a high-level grasp on a wide area of pharmacological aspects, indicating possible unaccounted interactions and missing pharmacological properties that can lead to drug repositioning for the 15% drugs which seem to be inconsistent with the predicted property. Also, by using network centralities, we can rank drugs according to their interaction potential for both simple and complex multi-pathology therapies. Moreover, our clustering approach can be extended for applications such as analyzing drug-target interactions or phenotyping patients in personalized medicine applications.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27599720</pmid><doi>10.1038/srep32745</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2016-09, Vol.6 (1), p.32745, Article 32745 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5013446 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 631/154/436 631/92/360 Algorithms Cluster Analysis Computational Biology - methods Databases, Factual Drug discovery Drug interaction Drug Interactions Drug Repositioning Drugs Energy Humanities and Social Sciences Humans multidisciplinary Phenotyping Precision Medicine Science |
title | Clustering drug-drug interaction networks with energy model layouts: community analysis and drug repurposing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A57%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clustering%20drug-drug%20interaction%20networks%20with%20energy%20model%20layouts:%20community%20analysis%20and%20drug%20repurposing&rft.jtitle=Scientific%20reports&rft.au=Udrescu,%20Lucre%C5%A3ia&rft.date=2016-09-07&rft.volume=6&rft.issue=1&rft.spage=32745&rft.pages=32745-&rft.artnum=32745&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep32745&rft_dat=%3Cproquest_pubme%3E1899069951%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899069951&rft_id=info:pmid/27599720&rfr_iscdi=true |