Three measures of explained variation for correlated survival data under the proportional hazards mixed-effects model
Measures of explained variation are useful in scientific research, as they quantify the amount of variation in an outcome variable of interest that is explained by one or more other variables. We develop such measures for correlated survival data, under the proportional hazards mixed‐effects model....
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 2016-10, Vol.35 (23), p.4153-4165 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4165 |
---|---|
container_issue | 23 |
container_start_page | 4153 |
container_title | Statistics in medicine |
container_volume | 35 |
creator | Honerkamp-Smith, Gordon Xu, Ronghui |
description | Measures of explained variation are useful in scientific research, as they quantify the amount of variation in an outcome variable of interest that is explained by one or more other variables. We develop such measures for correlated survival data, under the proportional hazards mixed‐effects model. Because different approaches have been studied in the literature outside the classical linear regression model, we investigate three measures R2,
Rres2, and ρ2 that quantify three different population coefficients. We show that although the three population measures are not the same, they reflect similar amounts of variation explained by the predictors. Among the three measures, we show that R2, which is the simplest to compute, is also consistent for the first population measure under the usual asymptotic scenario when the number of clusters tends to infinity. The other two measures, on the other hand, all require that in addition the cluster sizes be large. We study the properties of the measures both analytically and through simulation studies. We illustrate their different usage on a multi‐center clinical trial and a recurrent events data set. Copyright © 2016 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/sim.6993 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5012918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1817050475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4763-d4915cc68a0d9aa588dd83a11de13b9125718911a919a19094e37eeb914342133</originalsourceid><addsrcrecordid>eNp1kV2L1DAUhoso7uwq-Ask4I03XXPSpmluBFndDxgVcVXwJpxtTp2sbVOTdpz115thx_EDvArhfc7D4bxZ9gj4MXAunkXXH1daF3eyBXCtci5kfTdbcKFUXimQB9lhjNecA0ih7mcHQokSapCLbL5cBSLWE8Y5UGS-ZbQZO3QDWbbG4HByfmCtD6zxIVCHUwoSu3Zr7JjFCdk8WApsWhEbgx992E6kbIU_MNjIerchm1PbUjOln7fUPcjutdhFerh7j7IPp68uT87z5duzi5MXy7wpVVXkttQgm6aqkVuNKOva2rpAAEtQXGkQUkGtAVCDRtBcl1QoopSURSmgKI6y57fecb7qyTY0TAE7MwbXY7gxHp35OxncynzxayM5CA11EjzdCYL_NlOcTO9iQ12HA_k5mnRExSUvlUzok3_Qaz-HdIgtJQSvBNfwW9gEH2Ogdr8McLPt0qQuzbbLhD7-c_k9-Ku8BOS3wHfX0c1_Reb9xeudcMe7ONFmz2P4aipVKGk-vTkz5_Ldx898-dKUxU9x6bk8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1822062091</pqid></control><display><type>article</type><title>Three measures of explained variation for correlated survival data under the proportional hazards mixed-effects model</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Honerkamp-Smith, Gordon ; Xu, Ronghui</creator><creatorcontrib>Honerkamp-Smith, Gordon ; Xu, Ronghui</creatorcontrib><description>Measures of explained variation are useful in scientific research, as they quantify the amount of variation in an outcome variable of interest that is explained by one or more other variables. We develop such measures for correlated survival data, under the proportional hazards mixed‐effects model. Because different approaches have been studied in the literature outside the classical linear regression model, we investigate three measures R2,
Rres2, and ρ2 that quantify three different population coefficients. We show that although the three population measures are not the same, they reflect similar amounts of variation explained by the predictors. Among the three measures, we show that R2, which is the simplest to compute, is also consistent for the first population measure under the usual asymptotic scenario when the number of clusters tends to infinity. The other two measures, on the other hand, all require that in addition the cluster sizes be large. We study the properties of the measures both analytically and through simulation studies. We illustrate their different usage on a multi‐center clinical trial and a recurrent events data set. Copyright © 2016 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.6993</identifier><identifier>PMID: 27241815</identifier><identifier>CODEN: SMEDDA</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>clustered survival data ; Correlation analysis ; explained randomness ; Humans ; Linear Models ; Measurement ; Medical statistics ; multi-center clinical trial ; Proportional Hazards Models ; recurrent events ; Regression analysis ; Simulation ; Survival Analysis ; Variables</subject><ispartof>Statistics in medicine, 2016-10, Vol.35 (23), p.4153-4165</ispartof><rights>Copyright © 2016 John Wiley & Sons, Ltd.</rights><rights>Copyright Wiley Subscription Services, Inc. Oct 15, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4763-d4915cc68a0d9aa588dd83a11de13b9125718911a919a19094e37eeb914342133</citedby><cites>FETCH-LOGICAL-c4763-d4915cc68a0d9aa588dd83a11de13b9125718911a919a19094e37eeb914342133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.6993$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.6993$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27241815$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Honerkamp-Smith, Gordon</creatorcontrib><creatorcontrib>Xu, Ronghui</creatorcontrib><title>Three measures of explained variation for correlated survival data under the proportional hazards mixed-effects model</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>Measures of explained variation are useful in scientific research, as they quantify the amount of variation in an outcome variable of interest that is explained by one or more other variables. We develop such measures for correlated survival data, under the proportional hazards mixed‐effects model. Because different approaches have been studied in the literature outside the classical linear regression model, we investigate three measures R2,
Rres2, and ρ2 that quantify three different population coefficients. We show that although the three population measures are not the same, they reflect similar amounts of variation explained by the predictors. Among the three measures, we show that R2, which is the simplest to compute, is also consistent for the first population measure under the usual asymptotic scenario when the number of clusters tends to infinity. The other two measures, on the other hand, all require that in addition the cluster sizes be large. We study the properties of the measures both analytically and through simulation studies. We illustrate their different usage on a multi‐center clinical trial and a recurrent events data set. Copyright © 2016 John Wiley & Sons, Ltd.</description><subject>clustered survival data</subject><subject>Correlation analysis</subject><subject>explained randomness</subject><subject>Humans</subject><subject>Linear Models</subject><subject>Measurement</subject><subject>Medical statistics</subject><subject>multi-center clinical trial</subject><subject>Proportional Hazards Models</subject><subject>recurrent events</subject><subject>Regression analysis</subject><subject>Simulation</subject><subject>Survival Analysis</subject><subject>Variables</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kV2L1DAUhoso7uwq-Ask4I03XXPSpmluBFndDxgVcVXwJpxtTp2sbVOTdpz115thx_EDvArhfc7D4bxZ9gj4MXAunkXXH1daF3eyBXCtci5kfTdbcKFUXimQB9lhjNecA0ih7mcHQokSapCLbL5cBSLWE8Y5UGS-ZbQZO3QDWbbG4HByfmCtD6zxIVCHUwoSu3Zr7JjFCdk8WApsWhEbgx992E6kbIU_MNjIerchm1PbUjOln7fUPcjutdhFerh7j7IPp68uT87z5duzi5MXy7wpVVXkttQgm6aqkVuNKOva2rpAAEtQXGkQUkGtAVCDRtBcl1QoopSURSmgKI6y57fecb7qyTY0TAE7MwbXY7gxHp35OxncynzxayM5CA11EjzdCYL_NlOcTO9iQ12HA_k5mnRExSUvlUzok3_Qaz-HdIgtJQSvBNfwW9gEH2Ogdr8McLPt0qQuzbbLhD7-c_k9-Ku8BOS3wHfX0c1_Reb9xeudcMe7ONFmz2P4aipVKGk-vTkz5_Ldx898-dKUxU9x6bk8</recordid><startdate>20161015</startdate><enddate>20161015</enddate><creator>Honerkamp-Smith, Gordon</creator><creator>Xu, Ronghui</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161015</creationdate><title>Three measures of explained variation for correlated survival data under the proportional hazards mixed-effects model</title><author>Honerkamp-Smith, Gordon ; Xu, Ronghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4763-d4915cc68a0d9aa588dd83a11de13b9125718911a919a19094e37eeb914342133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>clustered survival data</topic><topic>Correlation analysis</topic><topic>explained randomness</topic><topic>Humans</topic><topic>Linear Models</topic><topic>Measurement</topic><topic>Medical statistics</topic><topic>multi-center clinical trial</topic><topic>Proportional Hazards Models</topic><topic>recurrent events</topic><topic>Regression analysis</topic><topic>Simulation</topic><topic>Survival Analysis</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Honerkamp-Smith, Gordon</creatorcontrib><creatorcontrib>Xu, Ronghui</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Honerkamp-Smith, Gordon</au><au>Xu, Ronghui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three measures of explained variation for correlated survival data under the proportional hazards mixed-effects model</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2016-10-15</date><risdate>2016</risdate><volume>35</volume><issue>23</issue><spage>4153</spage><epage>4165</epage><pages>4153-4165</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><coden>SMEDDA</coden><abstract>Measures of explained variation are useful in scientific research, as they quantify the amount of variation in an outcome variable of interest that is explained by one or more other variables. We develop such measures for correlated survival data, under the proportional hazards mixed‐effects model. Because different approaches have been studied in the literature outside the classical linear regression model, we investigate three measures R2,
Rres2, and ρ2 that quantify three different population coefficients. We show that although the three population measures are not the same, they reflect similar amounts of variation explained by the predictors. Among the three measures, we show that R2, which is the simplest to compute, is also consistent for the first population measure under the usual asymptotic scenario when the number of clusters tends to infinity. The other two measures, on the other hand, all require that in addition the cluster sizes be large. We study the properties of the measures both analytically and through simulation studies. We illustrate their different usage on a multi‐center clinical trial and a recurrent events data set. Copyright © 2016 John Wiley & Sons, Ltd.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>27241815</pmid><doi>10.1002/sim.6993</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2016-10, Vol.35 (23), p.4153-4165 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5012918 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | clustered survival data Correlation analysis explained randomness Humans Linear Models Measurement Medical statistics multi-center clinical trial Proportional Hazards Models recurrent events Regression analysis Simulation Survival Analysis Variables |
title | Three measures of explained variation for correlated survival data under the proportional hazards mixed-effects model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A42%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%20measures%20of%20explained%20variation%20for%20correlated%20survival%20data%20under%20the%20proportional%20hazards%20mixed-effects%20model&rft.jtitle=Statistics%20in%20medicine&rft.au=Honerkamp-Smith,%20Gordon&rft.date=2016-10-15&rft.volume=35&rft.issue=23&rft.spage=4153&rft.epage=4165&rft.pages=4153-4165&rft.issn=0277-6715&rft.eissn=1097-0258&rft.coden=SMEDDA&rft_id=info:doi/10.1002/sim.6993&rft_dat=%3Cproquest_pubme%3E1817050475%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1822062091&rft_id=info:pmid/27241815&rfr_iscdi=true |