Three measures of explained variation for correlated survival data under the proportional hazards mixed-effects model

Measures of explained variation are useful in scientific research, as they quantify the amount of variation in an outcome variable of interest that is explained by one or more other variables. We develop such measures for correlated survival data, under the proportional hazards mixed‐effects model....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2016-10, Vol.35 (23), p.4153-4165
Hauptverfasser: Honerkamp-Smith, Gordon, Xu, Ronghui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4165
container_issue 23
container_start_page 4153
container_title Statistics in medicine
container_volume 35
creator Honerkamp-Smith, Gordon
Xu, Ronghui
description Measures of explained variation are useful in scientific research, as they quantify the amount of variation in an outcome variable of interest that is explained by one or more other variables. We develop such measures for correlated survival data, under the proportional hazards mixed‐effects model. Because different approaches have been studied in the literature outside the classical linear regression model, we investigate three measures R2, Rres2, and ρ2 that quantify three different population coefficients. We show that although the three population measures are not the same, they reflect similar amounts of variation explained by the predictors. Among the three measures, we show that R2, which is the simplest to compute, is also consistent for the first population measure under the usual asymptotic scenario when the number of clusters tends to infinity. The other two measures, on the other hand, all require that in addition the cluster sizes be large. We study the properties of the measures both analytically and through simulation studies. We illustrate their different usage on a multi‐center clinical trial and a recurrent events data set. Copyright © 2016 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/sim.6993
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5012918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1817050475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4763-d4915cc68a0d9aa588dd83a11de13b9125718911a919a19094e37eeb914342133</originalsourceid><addsrcrecordid>eNp1kV2L1DAUhoso7uwq-Ask4I03XXPSpmluBFndDxgVcVXwJpxtTp2sbVOTdpz115thx_EDvArhfc7D4bxZ9gj4MXAunkXXH1daF3eyBXCtci5kfTdbcKFUXimQB9lhjNecA0ih7mcHQokSapCLbL5cBSLWE8Y5UGS-ZbQZO3QDWbbG4HByfmCtD6zxIVCHUwoSu3Zr7JjFCdk8WApsWhEbgx992E6kbIU_MNjIerchm1PbUjOln7fUPcjutdhFerh7j7IPp68uT87z5duzi5MXy7wpVVXkttQgm6aqkVuNKOva2rpAAEtQXGkQUkGtAVCDRtBcl1QoopSURSmgKI6y57fecb7qyTY0TAE7MwbXY7gxHp35OxncynzxayM5CA11EjzdCYL_NlOcTO9iQ12HA_k5mnRExSUvlUzok3_Qaz-HdIgtJQSvBNfwW9gEH2Ogdr8McLPt0qQuzbbLhD7-c_k9-Ku8BOS3wHfX0c1_Reb9xeudcMe7ONFmz2P4aipVKGk-vTkz5_Ldx898-dKUxU9x6bk8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1822062091</pqid></control><display><type>article</type><title>Three measures of explained variation for correlated survival data under the proportional hazards mixed-effects model</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Honerkamp-Smith, Gordon ; Xu, Ronghui</creator><creatorcontrib>Honerkamp-Smith, Gordon ; Xu, Ronghui</creatorcontrib><description>Measures of explained variation are useful in scientific research, as they quantify the amount of variation in an outcome variable of interest that is explained by one or more other variables. We develop such measures for correlated survival data, under the proportional hazards mixed‐effects model. Because different approaches have been studied in the literature outside the classical linear regression model, we investigate three measures R2, Rres2, and ρ2 that quantify three different population coefficients. We show that although the three population measures are not the same, they reflect similar amounts of variation explained by the predictors. Among the three measures, we show that R2, which is the simplest to compute, is also consistent for the first population measure under the usual asymptotic scenario when the number of clusters tends to infinity. The other two measures, on the other hand, all require that in addition the cluster sizes be large. We study the properties of the measures both analytically and through simulation studies. We illustrate their different usage on a multi‐center clinical trial and a recurrent events data set. Copyright © 2016 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.6993</identifier><identifier>PMID: 27241815</identifier><identifier>CODEN: SMEDDA</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>clustered survival data ; Correlation analysis ; explained randomness ; Humans ; Linear Models ; Measurement ; Medical statistics ; multi-center clinical trial ; Proportional Hazards Models ; recurrent events ; Regression analysis ; Simulation ; Survival Analysis ; Variables</subject><ispartof>Statistics in medicine, 2016-10, Vol.35 (23), p.4153-4165</ispartof><rights>Copyright © 2016 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright Wiley Subscription Services, Inc. Oct 15, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4763-d4915cc68a0d9aa588dd83a11de13b9125718911a919a19094e37eeb914342133</citedby><cites>FETCH-LOGICAL-c4763-d4915cc68a0d9aa588dd83a11de13b9125718911a919a19094e37eeb914342133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.6993$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.6993$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27241815$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Honerkamp-Smith, Gordon</creatorcontrib><creatorcontrib>Xu, Ronghui</creatorcontrib><title>Three measures of explained variation for correlated survival data under the proportional hazards mixed-effects model</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>Measures of explained variation are useful in scientific research, as they quantify the amount of variation in an outcome variable of interest that is explained by one or more other variables. We develop such measures for correlated survival data, under the proportional hazards mixed‐effects model. Because different approaches have been studied in the literature outside the classical linear regression model, we investigate three measures R2, Rres2, and ρ2 that quantify three different population coefficients. We show that although the three population measures are not the same, they reflect similar amounts of variation explained by the predictors. Among the three measures, we show that R2, which is the simplest to compute, is also consistent for the first population measure under the usual asymptotic scenario when the number of clusters tends to infinity. The other two measures, on the other hand, all require that in addition the cluster sizes be large. We study the properties of the measures both analytically and through simulation studies. We illustrate their different usage on a multi‐center clinical trial and a recurrent events data set. Copyright © 2016 John Wiley &amp; Sons, Ltd.</description><subject>clustered survival data</subject><subject>Correlation analysis</subject><subject>explained randomness</subject><subject>Humans</subject><subject>Linear Models</subject><subject>Measurement</subject><subject>Medical statistics</subject><subject>multi-center clinical trial</subject><subject>Proportional Hazards Models</subject><subject>recurrent events</subject><subject>Regression analysis</subject><subject>Simulation</subject><subject>Survival Analysis</subject><subject>Variables</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kV2L1DAUhoso7uwq-Ask4I03XXPSpmluBFndDxgVcVXwJpxtTp2sbVOTdpz115thx_EDvArhfc7D4bxZ9gj4MXAunkXXH1daF3eyBXCtci5kfTdbcKFUXimQB9lhjNecA0ih7mcHQokSapCLbL5cBSLWE8Y5UGS-ZbQZO3QDWbbG4HByfmCtD6zxIVCHUwoSu3Zr7JjFCdk8WApsWhEbgx992E6kbIU_MNjIerchm1PbUjOln7fUPcjutdhFerh7j7IPp68uT87z5duzi5MXy7wpVVXkttQgm6aqkVuNKOva2rpAAEtQXGkQUkGtAVCDRtBcl1QoopSURSmgKI6y57fecb7qyTY0TAE7MwbXY7gxHp35OxncynzxayM5CA11EjzdCYL_NlOcTO9iQ12HA_k5mnRExSUvlUzok3_Qaz-HdIgtJQSvBNfwW9gEH2Ogdr8McLPt0qQuzbbLhD7-c_k9-Ku8BOS3wHfX0c1_Reb9xeudcMe7ONFmz2P4aipVKGk-vTkz5_Ldx898-dKUxU9x6bk8</recordid><startdate>20161015</startdate><enddate>20161015</enddate><creator>Honerkamp-Smith, Gordon</creator><creator>Xu, Ronghui</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161015</creationdate><title>Three measures of explained variation for correlated survival data under the proportional hazards mixed-effects model</title><author>Honerkamp-Smith, Gordon ; Xu, Ronghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4763-d4915cc68a0d9aa588dd83a11de13b9125718911a919a19094e37eeb914342133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>clustered survival data</topic><topic>Correlation analysis</topic><topic>explained randomness</topic><topic>Humans</topic><topic>Linear Models</topic><topic>Measurement</topic><topic>Medical statistics</topic><topic>multi-center clinical trial</topic><topic>Proportional Hazards Models</topic><topic>recurrent events</topic><topic>Regression analysis</topic><topic>Simulation</topic><topic>Survival Analysis</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Honerkamp-Smith, Gordon</creatorcontrib><creatorcontrib>Xu, Ronghui</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Honerkamp-Smith, Gordon</au><au>Xu, Ronghui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three measures of explained variation for correlated survival data under the proportional hazards mixed-effects model</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2016-10-15</date><risdate>2016</risdate><volume>35</volume><issue>23</issue><spage>4153</spage><epage>4165</epage><pages>4153-4165</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><coden>SMEDDA</coden><abstract>Measures of explained variation are useful in scientific research, as they quantify the amount of variation in an outcome variable of interest that is explained by one or more other variables. We develop such measures for correlated survival data, under the proportional hazards mixed‐effects model. Because different approaches have been studied in the literature outside the classical linear regression model, we investigate three measures R2, Rres2, and ρ2 that quantify three different population coefficients. We show that although the three population measures are not the same, they reflect similar amounts of variation explained by the predictors. Among the three measures, we show that R2, which is the simplest to compute, is also consistent for the first population measure under the usual asymptotic scenario when the number of clusters tends to infinity. The other two measures, on the other hand, all require that in addition the cluster sizes be large. We study the properties of the measures both analytically and through simulation studies. We illustrate their different usage on a multi‐center clinical trial and a recurrent events data set. Copyright © 2016 John Wiley &amp; Sons, Ltd.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>27241815</pmid><doi>10.1002/sim.6993</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2016-10, Vol.35 (23), p.4153-4165
issn 0277-6715
1097-0258
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5012918
source MEDLINE; Wiley Online Library All Journals
subjects clustered survival data
Correlation analysis
explained randomness
Humans
Linear Models
Measurement
Medical statistics
multi-center clinical trial
Proportional Hazards Models
recurrent events
Regression analysis
Simulation
Survival Analysis
Variables
title Three measures of explained variation for correlated survival data under the proportional hazards mixed-effects model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A42%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%20measures%20of%20explained%20variation%20for%20correlated%20survival%20data%20under%20the%20proportional%20hazards%20mixed-effects%20model&rft.jtitle=Statistics%20in%20medicine&rft.au=Honerkamp-Smith,%20Gordon&rft.date=2016-10-15&rft.volume=35&rft.issue=23&rft.spage=4153&rft.epage=4165&rft.pages=4153-4165&rft.issn=0277-6715&rft.eissn=1097-0258&rft.coden=SMEDDA&rft_id=info:doi/10.1002/sim.6993&rft_dat=%3Cproquest_pubme%3E1817050475%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1822062091&rft_id=info:pmid/27241815&rfr_iscdi=true